1 |
沙爱民,童峥,高杰.基于卷积神经网络的路表病害识别与测量[J].中国公路学报,2018,31(1):1-10. 10.3969/j.issn.1001-7372.2018.01.001
|
|
SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. 10.3969/j.issn.1001-7372.2018.01.001
|
2 |
郝巨鸣,杨景玉,韩淑梅,等.引入Ghost模块和ECA的YOLOv4公路路面裂缝检测方法[J].计算机应用,2023,43(4):1284-1290. 10.11772/j.issn.1001-9081.2022030410
|
|
HAO J M, YANG J Y, HAN S M, et al. YOLOv4 highway pavement crack detection method using Ghost module and ECA[J]. Journal of Computer Applications, 2023, 43(4): 1284-1290. 10.11772/j.issn.1001-9081.2022030410
|
3 |
蔡逢煌,张岳鑫,黄捷.基于YOLOv3与注意力机制的桥梁表面裂痕检测算法[J].模式识别与人工智能,2020,33(10):926-933. 10.16451/j.cnki.issn1003-6059.202010007
|
|
CAI F H, ZHANG Y X, HUANG J. Bridge surface crack detection algorithm based on YOLOv3 and attention mechanism[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(10): 926-933. 10.16451/j.cnki.issn1003-6059.202010007
|
4 |
EISENBACH M, STRICKER R, SEICHTER D, et al. How to get pavement distress detection ready for deep learning? A systematic approach[C]// Proceedings of 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 2039-2047. 10.1109/ijcnn.2017.7966101
|
5 |
封筠,赵颖,毕健康,等.多级卷积神经网络的沥青路面裂缝图像层次化筛选[J].图学学报,2021,42(5):719-728. 10.11996/JG.j.2095-302X.2021050719
|
|
FENG J, ZHAO Y, BI J K, et al. Multi-level convolutional neural network for asphalt pavement crack image hierarchical filtering[J]. Journal of Graphics, 2021, 42(5): 719-728. 10.11996/JG.j.2095-302X.2021050719
|
6 |
张德津,李清泉,陈颖,等.基于空间聚集特征的沥青路面裂缝检测方法[J].自动化学报,2016,42(3):443-454.
|
|
ZHANG D J, LI Q Q, CHEN Y, et al. Asphalt pavement crack detection based on spatial clustering feature[J]. Acta Automatica Sinica, 2016, 42(3): 443-454.
|
7 |
RONNEBERGER O, FISCHER P, BROX T. U‑Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. 10.1007/978-3-319-24574-4_28
|
8 |
LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 404-419. 10.1007/978-3-030-01252-6_24
|
9 |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1580-1589. 10.1109/cvpr42600.2020.00165
|
10 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745
|
11 |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542. 10.1109/cvpr42600.2020.01155
|
12 |
ZOU Q, CAO Y, LI Q, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238. 10.1016/j.patrec.2011.11.004
|
13 |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognitions[C]// Proceedings of the 3rd International Conference on Learning Representations. [S.l.]: Computational and Biological Learning Society, 2015: 1-14.
|
14 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90
|
15 |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetB2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474
|
16 |
MA N, ZHANG X, ZHENG H-T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 122-138. 10.1007/978-3-030-01264-9_8
|
17 |
TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[J]. Proceedings of International Conference on Machine Learning, 2019, 97: 6105-6114.
|
18 |
TAN M, CHEN B, PANG R, et al. MnasNet: platform-aware neural architecture search for mobile[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2820-2828. 10.1109/cvpr.2019.00293
|
19 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2881-2890. 10.1109/cvpr.2017.660
|
20 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. 10.1109/tpami.2016.2644615
|
21 |
DING X, GUO Y, DING G, et al. AcNet: strengthening the kernel skeletons for powerful CNN via asymmetric convolution blocks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1911-1920. 10.1109/iccv.2019.00200
|
22 |
XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[J]. Advances in Neural Information Processing Systems, 2021, 34: 12077-12090.
|