Journal of Computer Applications

Special Issue: 第十九届中国机器学习会议(CCML 2023)

    Next Articles

PIPNet: A lightweight asphalt pavement crack image segmentation network

  

  • Received:2023-07-11 Revised:2023-08-15 Accepted:2023-08-21 Online:2026-02-05 Published:2024-05-10

轻量化沥青路面裂缝图像分割网络PIPNet

封筠1,毕健康2,霍一儒3,李家宽2   

  1. 1. 石家庄铁道大学信息科学与技术学院
    2. 石家庄铁道大学
    3. 石家庄铁道大学信息科学与技术学院;河北省电磁环境效应与信息处理重点实验室
  • 通讯作者: 封筠
  • 基金资助:
    河北省高等学校科学技术研究重点项目

Abstract: Crack segmentation is an important prerequisite for evaluating the damage degree of pavement diseases. In order to balance the effectiveness and real-time of deep neural network segmentation, a lightweight asphalt pavement crack segmentation neural network(PIPNet) based on U-Net encoder-decoder structure was proposed in this paper. The encoding part was an inverted pyramid structure. Multi-branch parallel dilated convolution module with different dilatation rates was proposed to extract multi-scale information from the top, middle and bottom features and reduce model complexity, which combined deep separable convolutions with ordinary convolutions and gradually reduced the number of parallel convolutions. Drawing on the characteristics of GhostNet network, an inverse residual lightweight module was designed, which embedded with parallel dual pooling attention. Testing results on GAPS384 dataset show that the proposed lightweight segmentation method improves its mIOU value by 1.10 percentage points, respectively when the Params and MFLOPs values are only about one-sixth of the ResNet50 encoding. The mIOU value is 4.14 and 9.95 percentage points higher than the lightweight GhostNet and SegNet networks, respectively. Experimental results show that the proposed method has high crack segmentation performance while reducing the model complexity, and has good adaptability to segmentation of different road crack images.

Key words: asphalt pavement image, crack segmentation, lightweight neural network, inverted pyramid structure, parallel dilated convolution

摘要: 裂缝分割是对路面病害损坏程度评估的重要前提,为平衡深度神经网络分割的有效性与实时性,提出一种基于U-Net编码-解码器结构的轻量化沥青路面裂缝图像分割网络(PIPNet)。编码部分为倒金字塔结构,提出了具有不同空洞率的多分支并行空洞卷积模块,结合深度可分离卷积和普通卷积,逐级减少并行卷积的个数,对表层、中层及底层特征提取多尺度信息并降低模型复杂度,借鉴GhostNet特点,设计了逆残差轻量化模块,嵌入并行双池化注意力。在GAPs384数据集上的测试结果表明,PIPNet在参数量和计算量仅为ResNet50编码近1/6的情况下,其平均交并比提高了1.10个百分点,且较轻量化GhostNet和SegNet分别高出4.14与9.95个百分点。实验结果表明,PIPNet在降低模型复杂度的同时,有着较高的裂缝分割性能,且对不同路面裂缝图像分割适应性良好。

关键词: 沥青路面图像, 裂缝分割, 轻量化神经网络, 倒金字塔结构, 并行空洞卷积