Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (2): 465-472.DOI: 10.11772/j.issn.1001-9081.2019081900
• CCF NDBC 2019 • Previous Articles Next Articles
Dong MA, Hongmei CHEN(), Lizhen WANG, Qing XIAO
Received:
2019-08-12
Revised:
2019-11-06
Accepted:
2019-11-08
Online:
2019-11-18
Published:
2020-02-10
Contact:
Hongmei CHEN
About author:
MA Dong, born in 1992, M. S. candidate. His research interests include spatial data mining.Supported by:
通讯作者:
陈红梅
作者简介:
马董(1992—),男,云南曲靖人,硕士研究生,主要研究方向:空间数据挖掘基金资助:
CLC Number:
Dong MA, Hongmei CHEN, Lizhen WANG, Qing XIAO. Dominant feature mining of spatial sub-prevalent co-location patterns[J]. Journal of Computer Applications, 2020, 40(2): 465-472.
马董, 陈红梅, 王丽珍, 肖清. 空间亚频繁co-location模式的主导特征挖掘[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 465-472.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019081900
特征 | 星型参与实例 | 星型行实例 |
---|---|---|
D | D.2 | {D.2#,F.5,H.1} |
D.3 | {D.3#,F.6,H.1} | |
D.4 | {D.4#,F.1,H.2} | |
F | F.1 | {D.4,F.1#,H.2} |
F.5 | {D.2,F.5#,H.1} | |
F.6 | {D.3,F.6#,H.1} | |
H | H.1 | {D.2,F.5,H.1#} {D.2,F.6,H.1#} {D.3,F.5,H.1#} {D.3,F.6,H.1#} |
H.2 | {D.1,F.1,H.2#} {D.4,F.1,H.2#} | |
H.3 | {D.6,F.2,H.3#} {D.6,F.3,H.3#} {D.7,F.2,H.3#} {D.7,F.3,H.3#} | |
H.4 | {D.5,F.4,H.4#} |
Tab.1 Star row instances of pattern {D,F,H}
特征 | 星型参与实例 | 星型行实例 |
---|---|---|
D | D.2 | {D.2#,F.5,H.1} |
D.3 | {D.3#,F.6,H.1} | |
D.4 | {D.4#,F.1,H.2} | |
F | F.1 | {D.4,F.1#,H.2} |
F.5 | {D.2,F.5#,H.1} | |
F.6 | {D.3,F.6#,H.1} | |
H | H.1 | {D.2,F.5,H.1#} {D.2,F.6,H.1#} {D.3,F.5,H.1#} {D.3,F.6,H.1#} |
H.2 | {D.1,F.1,H.2#} {D.4,F.1,H.2#} | |
H.3 | {D.6,F.2,H.3#} {D.6,F.3,H.3#} {D.7,F.2,H.3#} {D.7,F.3,H.3#} | |
H.4 | {D.5,F.4,H.4#} |
特征 | 贡献度(FCR) | 影响度(FIR) | 影响比指数(FIQI) |
---|---|---|---|
D | 0.18 | 0.43 | 0.00 |
F | 0.18 | 0.50 | 0.14 |
H | 0.65 | 1.75 | 0.75 |
Tab.2 Feature indicators of {D,F,H}
特征 | 贡献度(FCR) | 影响度(FIR) | 影响比指数(FIQI) |
---|---|---|---|
D | 0.18 | 0.43 | 0.00 |
F | 0.18 | 0.50 | 0.14 |
H | 0.65 | 1.75 | 0.75 |
数据集 | 特征数 | 实例数 | 范围(D×D) |
---|---|---|---|
Plantdata | 31 | 356 | 8 000×13 000 |
Beijing-POI | 16 | 23 025 | 22 000×14 000 |
Synthetic data 1 | 10 | 10 000 | 500×500 |
Synthetic data 2 | 10 | 10 000 | 1 000×1 000 |
Synthetic data 3 | 25 | 50 000 | 1 000×1 000 |
Tab. 3 Experimental data set statistics
数据集 | 特征数 | 实例数 | 范围(D×D) |
---|---|---|---|
Plantdata | 31 | 356 | 8 000×13 000 |
Beijing-POI | 16 | 23 025 | 22 000×14 000 |
Synthetic data 1 | 10 | 10 000 | 500×500 |
Synthetic data 2 | 10 | 10 000 | 1 000×1 000 |
Synthetic data 3 | 25 | 50 000 | 1 000×1 000 |
数据集 | 距离阈值(d) | 星型参与度阈值(min_sprev) | 贡献度阈值(min_ fcr) | 影响比指数阈值(min_ fiqi) |
---|---|---|---|---|
Plantdata | 5 000 | 0.3 | 0.3 | 0.3 |
Beijing-POI | 50 | 0.3 | 0.3 | 0.3 |
Synthetic data 1 | 20 | 0.3 | 0.3 | 0.3 |
Synthetic data 2 | 20 | 0.3 | 0.3 | 0.3 |
Synthetic data 3 | 20 | 0.3 | 0.3 | 0.3 |
Tab. 4 Default values of experimental parameters of SDFMA algorithm
数据集 | 距离阈值(d) | 星型参与度阈值(min_sprev) | 贡献度阈值(min_ fcr) | 影响比指数阈值(min_ fiqi) |
---|---|---|---|---|
Plantdata | 5 000 | 0.3 | 0.3 | 0.3 |
Beijing-POI | 50 | 0.3 | 0.3 | 0.3 |
Synthetic data 1 | 20 | 0.3 | 0.3 | 0.3 |
Synthetic data 2 | 20 | 0.3 | 0.3 | 0.3 |
Synthetic data 3 | 20 | 0.3 | 0.3 | 0.3 |
模式 | Plantdata数据集 | Beijing-POI数据集 | |||
---|---|---|---|---|---|
SDFMA | AMDFCP | SDFMA | AMDFCP | ||
二阶 模式 | {松茸,长苞冷杉*} {天女花,水清树*} {冬虫夏草,梭砂贝母*} | 无 | {中餐馆,酒店*} {咖啡馆,花园*} {酒店*,停车场} | 无 | |
三阶 模式 | {高河菜,冬虫夏草,梭砂贝母*} {冬虫夏草,梭砂贝母*,长苞冷杉*} {冬虫夏草*,梭砂贝母*,天女花} {云南榧木*,云南红豆杉,贡山三尖杉*} | {高河菜*,冬虫夏草,梭砂贝母} {冬虫夏草*,梭砂贝母*,长苞冷杉} {冬虫夏草*,梭砂贝母,天女花} | {中餐馆,酒店*,服装店*} {酒店*,停车场,服装店*} {中餐馆,咖啡屋*,招待所*} | {中餐馆*,酒店*,服装店} {酒店*,停车场*,服装店} |
Tab. 5 Mining result comparison of SDFMA and AMDFCP on different datasets
模式 | Plantdata数据集 | Beijing-POI数据集 | |||
---|---|---|---|---|---|
SDFMA | AMDFCP | SDFMA | AMDFCP | ||
二阶 模式 | {松茸,长苞冷杉*} {天女花,水清树*} {冬虫夏草,梭砂贝母*} | 无 | {中餐馆,酒店*} {咖啡馆,花园*} {酒店*,停车场} | 无 | |
三阶 模式 | {高河菜,冬虫夏草,梭砂贝母*} {冬虫夏草,梭砂贝母*,长苞冷杉*} {冬虫夏草*,梭砂贝母*,天女花} {云南榧木*,云南红豆杉,贡山三尖杉*} | {高河菜*,冬虫夏草,梭砂贝母} {冬虫夏草*,梭砂贝母*,长苞冷杉} {冬虫夏草*,梭砂贝母,天女花} | {中餐馆,酒店*,服装店*} {酒店*,停车场,服装店*} {中餐馆,咖啡屋*,招待所*} | {中餐馆*,酒店*,服装店} {酒店*,停车场*,服装店} |
1 | AKBARI M, SAMADZADEGAN F, WEIBEL R. A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution[J]. Journal of Geographical Systems, 2015, 17(3): 249-274. 10.1007/s10109-015-0216-4 |
2 | YU W, AI T, HE Y, et al. Spatial co-location pattern mining of facility points-of-interest improved by network neighborhood and distance decay effects[J]. International Journal of Geographical Information Science, 2017, 31(2): 280-296. 10.1080/13658816.2016.1194423 |
3 | AN S, YANG H, WANG J, et al. Mining urban recurrent congestion evolution patterns from GPS equipped vehicle mobility data[J]. Information Sciences, 2016, 373: 515-526. 10.1016/j.ins.2016.06.033 |
4 | 王丽珍,陈红梅. 空间模式挖掘理论与方法[M]. 北京:科学出版社, 2014:2-4. (WANG L Z, CHEN H M, Spatial Pattern Mining Theory and Methods[M]. Beijing: Science Press, 2014:2-4.) |
5 | FANG Y, WANG L, WANG X, et al. Mining co-location patterns with dominant features[C]// Proceedings of the 2017 International Conference on Web Information Systems Engineering, LNCS10569. Cham: Springer, 2017: 183-198. |
6 | WANG L, BAO X, ZHOU L, et al. Maximal sub-prevalent co-location patterns and efficient mining algorithms[C]// Proceedings of the 2017 International Conference on Web Information Systems Engineering, LNCS10569. Cham: Springer, 2017: 199-214. |
7 | WANG L, BAO X, ZHOU L, et al. Mining maximal sub-prevalent co-location patterns[J]. World Wide Web, 2019, 22(5): 1971-1997. 10.1007/s11280-018-0646-2 |
8 | HUANG Y, SHEKHAR S, XIONG H. Discovering colocation patterns from spatial data sets: a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004,16(12): 1472-1485. 10.1109/tkde.2004.90 |
9 | YOO J S, SHEKHAR S, SMITH J, et al. A partial join approach for mining co-location patterns[C]// Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems. New York: ACM, 2004: 241-249. 10.1145/1032222.1032258 |
10 | YOO J S, SHEKHAR S, CELIK M. A join-less approach for co-location pattern mining: a summary of results[C]// Proceedings of the 5th IEEE International Conference on Data Mining. Piscataway: IEEE, 2005: 813-816. 10.1109/icdm.2005.8 |
11 | WANG L, BAO Y, LU J, et al. A new join-less approach for co-location pattern mining[C]// Proceedings of the 8th IEEE International Conference on Computer and Information Technology. Piscataway: IEEE, 2008: 197-202. 10.1109/cit.2008.4594673 |
12 | WANG L, BAO Y, LU Z. Efficient discovery of spatial co-location patterns using the iCPI-tree[J]. The Open Information Systems Journal, 2009, 3 :69-80. 10.2174/1874133900903020069 |
13 | WANG L, ZHOU L, LU J, et al. An order-clique-based approach for mining maximal co-locations[J]. Information Sciences, 2009, 179(19): 3370-3382. 10.1016/j.ins.2009.05.023 |
14 | WANG L, CHEN H, ZHAO L, et al. Efficiently mining co-location rules on interval data[C]// Proceedings of the 2010 International Conference on Advanced Data Mining and Applications, LNCS6440. Berlin: Springer, 2010: 477-488. |
15 | 陆叶,王丽珍,张晓峰. 从不确定数据集中挖掘频繁co-location模式[J]. 计算机科学与探索, 2009, 3(6): 656-664. 10.3778/j.issn.1673-9418.2009.06.011 |
LU Y, WANG L Z, ZHANG X F. Mining frequent co-location patterns from uncertain data[J]. Journal of Frontiers of Computer Science and Technology, 2009, 3(6): 656-664. 10.3778/j.issn.1673-9418.2009.06.011 | |
16 | WANG L, WU P, CHEN H. Finding probabilistic prevalent colocations in spatially uncertain data sets[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(4): 790-804. 10.1109/tkde.2011.256 |
17 | HUANG Y, PEI J, XIONG H. Mining co-location patterns with rare events from spatial data sets[J]. GeoInformatica, 2006, 10(3): 239-260. 10.1007/s10707-006-9827-8 |
18 | 冯岭,王丽珍,高世健. 一种带稀有特征的空间co-location模式挖掘新方法[J]. 南京大学学报(自然科学版), 2012, 48(1):99-107. |
FENG L, WANG L Z, GAO S J. A new approach of mining co-location patterns in spatial datasets with rare features[J]. Journal of Nanjing University (Natural Sciences), 2012, 48(1): 99-107. | |
19 | 欧阳志平,王丽珍,陈红梅. 模糊对象的空间co-location模式挖掘研究[J]. 计算机学报, 2011, 34(10):1947-1955. 10.3724/SP.J.1016.2011.01947 |
OUYANG Z P, WANG L Z, CHEN H M. Mining spatial co-location patterns for fuzzy objects[J]. Chinese Journal of Computers, 2011, 34(10): 1947-1955. 10.3724/SP.J.1016.2011.01947 | |
20 | FANG Y, WANG L, HU T. Spatial co-location pattern mining based on density peaks clustering and fuzzy theory[C]// Proceedings of the 2018 Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data, LNCS10988. Cham: Springer, 2018: 298-305. |
21 | 雷乐,王丽珍,肖清. 空间co-location模式挖掘中的模糊技术初探[J]. 计算机工程与应用, 2019, 55(21): 158-166. 10.1109/icbk.2019.00025 |
LEI L, WANG L Z, XIAO Q. Study on fuzzy mining technology in spatial co-location pattern mining[J]. Computer Engineering and Applications , 2019, 55(21): 158-166. 10.1109/icbk.2019.00025 | |
22 | WANG X, WANG L, LU J, et al. Effectively updating high utility co-location from spatial database[C]// Proceedings of the 17th Web-Age Information Management, LNCS9658. Cham: Springer, 2016: 67-81. |
23 | FLOUVAT F, VAN SOC J F N, DESMIER E, et al. Domain-driven co-location mining[J]. GeoInformatica, 2015, 19(1): 147-183. 10.1007/s10707-014-0209-3 |
24 | ZENG X, YANG J, LI Z, et al. A method of mining spatial high utility co-location patterns based on feature actual participation weight[J]. Journal of Physics: Conference Series, 2019, 1168(3): No. 032064. 10.1088/1742-6596/1168/3/032064 |
[1] | YUAN Shu-han CHEN Wei-bin FU Shun-kai. User behavior similarity analysis of location based social network [J]. Journal of Computer Applications, 2012, 32(02): 322-325. |
[2] | WANG Sheng-sheng,LIU Da-you,CAO Bin,LIU Jie. A subspace clustering algorithm for high dimensional spatial data [J]. Journal of Computer Applications, 2005, 25(11): 2615-2617. |
[3] | ZHANG Yong-mei,HAN Yan,ZHANG Jian-hua. Research and realization of an efficient clustering algorithm [J]. Journal of Computer Applications, 2005, 25(07): 1573-1576. |
[4] | SUN Zhi-wei, ZHAO Zheng. Extension of DBSCAN with non-Spatial attributes [J]. Journal of Computer Applications, 2005, 25(06): 1379-1381. |
[5] | TU Jian-dong,CHEN Chong-cheng,HUANG Hong-yu,ZHANG Qun-hong. Design and implementation of J2EE-based spatial data mining [J]. Journal of Computer Applications, 2005, 25(03): 710-712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||