Journal of Computer Applications ›› 2005, Vol. 25 ›› Issue (06): 1379-1381.DOI: 10.3724/SP.J.1087.2005.1379

• Database and data mining • Previous Articles     Next Articles

Extension of DBSCAN with non-Spatial attributes

SUN Zhi-wei, ZHAO Zheng   

  1. School of Electronic & Information Engineering, Tianjin University, Tianjin 300072, China
  • Online:2011-04-06 Published:2005-06-01

DBSCAN在非空间属性处理上的扩展

孙志伟,赵政   

  1.  天津大学电子信息工程学院

Abstract: In many effective algorithms for cluster, DBSCAN algorithm is outstanding for its good performance in spatial data。Relying on a density-based notion of clusters, DBSCAN can discover clusters of arbitrary shape. But it cant support non-spatial attributes, in some application of cluster, the non-spatial attributes play important role. Based on the DBSCAN, referencing some notion of DBRS and considering data type of non-spatial attribute, the paper proposed a method of extension of DBSCAN and gave main algorithm。The algorithm can operate spatial and non-spatial attribute.

Key words: spatial data mining, spatial cluster, non-Spatial attribute, density

摘要: 在很多有效的聚类算法中,DBSCAN算法对于聚类空间数据有着非常好的性能,依赖于基于密度的聚类定义,DBSCAN可以发现任意形状的聚类,而且执行效率很高。但是,DBSCAN没有考虑非空间属性,而非空间属性对聚类的结果也起着十分重要的作用。在DBSCAN的基础上,参考DBRS的概念,进一步考虑了非空间属性的数据类型,从而提出了可以处理空间和非空间数据的新的聚类方法,并给出了主要的算法。

关键词:  , 空间数据挖掘, 空间聚类, 非空间属性, 密度

CLC Number: