1 肖辉.时间序列的相似性查询与异常检测[D].上海:复旦大学,2005:1,12-30. XIAOH. Similarity query and anomaly detection of time series [D]. Shanghai: Fudan University,2005:1,12-30.
2 苏雅茹.高维数据的维数约简算法研究[D].合肥:中国科技大学,2012:6. SUNY R. Study on dimension reduction algorithm of high dimensional data[D]. Hefei: University of Science and Technology of China, 2012:6.
3 HAWKINSD M. Identification of Outliers [M]. Pretoria, South Africa: Council for Scientific and Industrial Research, 1980:1.
4 杨风召.高维数据挖掘中若干关键问题的研究[D].上海:复旦大学,2003:12-15. YANGF Z. Research on some key problems in high dimensional data mining [D]. Shanghai: Fudan University, 2003:12-15.
5 BLUMA L, LANGLEYP. Selection of relevant features and examples in machine learning [J]. Artificial Intelligence, 1997, 97(1/2): 245-271.
6 YANGK, SHAHABIC. A PCA-based similarity measure for multivariate time series [C]// Proceedings of the 2nd ACM International Workshop on Multimedia Databases. New York: ACM, 2004: 65-74.
7 郭小芳,李锋.基于Eros的多元时间序列相似度分析[J].计算机工程与应用,2012,48(23):111-115. GUOX F, LIF. Similarity analysis of multiple time series based on Eros[J]. Computer Engineering and Applications, 2012, 48(23): 111-115.
8 郭小芳,李锋,宋晓宁.一种基于PCA的时间序列异常检测方法[J].江西师范大学学报(自然科学版),2012,36(3):28-283. GUOX F, LIF, SONGX N. A time series anomaly detection method based on PCA[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2012, 36(3): 28-283.
9 席剑辉,韩敏.主成分分析与神经网络的结合在多变量序列预测中的应用[J].控制理论与应用,2007,24(5):719-724. XIJ H, HANM. The application of principal component analysis and neural network in multivariable sequence prediction [J]. Control Theory and Application, 2007, 24(5): 719-724.
10 BRAUCKHOFFD, SALAMATIANK, MAY M. Applying PCA for traffic anomaly detection: problems and solutions [C]// Proceeding of the 2009 INFOCOM. Piscataway: IEEE, 2009: 46-53.
11 RINGBERGH, SOULEA, REXFORDJ, et al. Sensitivity of PCA for traffic anomaly detection[J]. Performance Evaluation Review, 2007, 35(1): 109-120.
12 钱叶魁,陈鸣,叶立新,等.基于多尺度主成分分析的全网络异常检测方法[J].软件学报,2012,23(2):361-377. QIANY K, CHENM, YEL X, et al. A multi-scale PCA based anomaly detection method for the whole network [J]. Journal of Software, 2012, 23(2) :361-377.
13 CAMACHOJ, PEREZ-VILLEGASA, GARCIA-TEDOROP, et al. PCA-based multivariate statistical network monitoring for anomaly detection[J].Computers & Security,2016,59:118-137.
14 PAFFENROTHR, KAY K, SERVIL. Robust PCA for anomaly detection in cyber networks [EB/OL]. [2019-01-04]. http://xueshu.baidu.com/usercenter/paper/show?paperid=8368c46755840 1a41852f6111551fe31&site=xueshu_se&hitarticle=1&sc_from=shu.
15 ROWEISS T, SAULL K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
16 TENENBAUMJ B.A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500):2319-2323.
17 徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. XUR, JIANGF, YAOH X. Overview of manifold learning[J]. Journal of Intelligent Systems, 2006,1(1):44-51.
18 马瑞,王家威,宋亦旭.基于局部线性嵌入(LLE)非线性降维的多流形学习[J].清华大学学报(自然科学版),2008,48(4):583-586. MAR, WANGJ W, SONGY X. Poly-manifold learning based on Locally Linear Embedding (LLE) nonlinear dimensionality reduction [J]. Journal of Tsinghua University (Natural Science), 2008,48(4):583-586.
19 李波.基于流形学习的特征提取方法及其应用研究[D].合肥:中国科学技术大学,2008:1-125. LIB. Study on feature extraction based on manifold learning and its application[D]. Hefei: University of Science and Technology of China,2008: 1-125.
20 管河山,姜青山,王声瑞.基于点分布特征的多元时间序列模式匹配方法[J].软件学报,2009,20(1):67-79. GUANH S, JIANGQ S, WANGS R. Multiple time series pattern matching method based on point distribution characteristics [J]. Journal of Software, 2009, 20(1): 67-79.
21 李晓菲,梁循,周小平.股价时间序列滑动窗口的流形学习实证研究[J].中国管理科学,2016,24(S1):495-503. LIX F, LIANGX, ZHOUX P. An empirical study on manifold learning of stock price time series sliding window [J]. Chinese Management Science, 2016,24(S1): 495-503.
22 黄焱.基于流形学习的金融数据分析方法研究[D].成都:电子科技大学,2015:32-44. HUANGY. Study on financial data analysis method based on manifold learning [D]. Chengdu: University of Electronic Science and Technology of China, 2015:32-44.
23 周鑫.时间序列异常模式挖掘关键技术研究[D].西安:西安科技大学, 2011:32-51. ZHOUX. Research on key technology of time series anomaly pattern mining [D]. Xi’an: Xi’an University of Science and Technology, 2011:32-51.
24 邵年华,沈冰,黄领梅,等.KPCA_SVM水文时间序列预测模型的建立与应用[J].西北农林科技大学学报(自然科学版), 2009, 37(9):204-208. SHAON H, SHENB, HUANGL M, et al. Establishment and application of hydrological time series prediction model based on KPCA_SVM [J]. Journal of Northwest Agricultural and Forestry University of Science and Technology (Natural Science Edition), 2009, 37(9): 204-208.
25 JENKINSO C, MATARICM J. A spatio-temporal extension to Isomap nonlinear dimension reduction[C]// Proceedings of the Twenty-First International Conference on Machine Learning. New York: ACM, 2004: 441-448.
26 李权,周兴社.基于KPCA的多变量时间序列数据异常检测方法研究[J].计算机测量与控制,2011,19(4):822-825. LIQ, ZHOUX S. Study on multivariate time series data anomaly detection method based on KPCA [J]. Computer Measurement and Control, 2011, 19(4): 822-825.
27 JIDIGAG R, SAMMULALP. Anomaly detection through comparison of heterogeneous machine learning classifiers vs KPCA [C]// Proceedings of the 2015 International Symposium on Security in Computing and Communication, CCIS 536. Cham: Springer, 2015: 483-495.
28 NAVIM, MESKINN, DAVOODIM. Sensor fault detection and isolation of an industrial gas turbine using partial adaptive KPCA[J]. Journal of Process Control, 2018, 64(21): 37-48.
29 DUANY, ZHAOY P, XYU Y Q, et al. Unmanned aerial vehicle sensor data anomaly detection using kernel principle component analysis [C]// Proceedings of the 2018 IEEE International Conference on Electronic Measurement & Instruments. Piscataway: IEEE, 2018: 241-246.
30 石浩.基于等距特征映射的非线性降维及其应用研究[D].合肥:中国科技大学,2017:6,33-52. SHIH. Nonlinear dimensionality reduction based on ISOMAP and its applications[D]. Hefei: University of Science and Technology of China, 2017:6,33-52.
31 DE SILVAV, TENENBAUMJ B. Sparse multidimensional scaling using landmark points [R]. Palo Alto:Stanford University, 2004: 1.
32 ORSENIGOC, VERCELLISC. Dimensionality reduction via ISOMAP with lock-step and elastic measures for time series gene expression classification[C]// Proceedings of the 11th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, LNCS 7833. Berlin: Springer, 2013: 92-103.
33 DADKHAHIH, DUARTEM F, MARLINB. ISOMAP out-of-sample extension for noisy time series data [C]// Proceedings of the 25th IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2015: 1-6.
34 ZHOUY, QYU J, CHAIYI, et al. Sensor fault diagnosis method based on Hilbert marginal spectrum and supervised locally linear embedding and support vector machine [C]// Proceedings of the 2017 Chinese Automation Congress. Piscataway: IEEE, 2017: 546-551.
35 WUQ, QIZ, WANGZ, et al. An improved weighted local linear embedding algorithm[C]// Proceedings of the 2018 14th International Conference on Computational Intelligence and Security. Washington, DC: IEEE Computer Society, 2018: 378-381.
36 LIM-A, XIH-W, SUNY-J. Feature extraction and visualization of MI-EEG with L-MVU algorithm [C]// Proceedings of the 2018 World Congress on Medical Physics and Biomedical Engineering, IFMBE 68/3. SpringerSingapore:, 2019: 835-839.
37 LENSENA, XUEB, ZHANGM. Can genetic programming do manifold learning too? [EB/OL]. [2019-02-08]. https://arxiv.org/abs/1902. 02949?context=cs.
38 田政雄.基于小波变换的时间序列挖掘研究[D].天津:天津大学,2008:11-14. TIANZ X. Time series mining based on wavelet transform [D]. Tianjin: Tianjin University, 2008:11-14.
39 ASTROMK J. On the choice of sampling rates in parametric identification of time series[J]. Information Sciences, 1969, 1(3): 273-278.
40 KEOGHE J, PAZZANIM J. A simple dimensionality reduction technique for fast similarity search in large time series databases[C]// Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 1805. Berlin: Springer, 2000: 122-133.
41 HUNGN Q V, ANH D T. An improvement of PAA for dimensionality reduction in large time series databases [C]// Proceedings of the 10th Pacific Rim International Conference on Artificial Intelligence: Trends in Artificial Intelligence, LNCS 5351. Berlin: Springer, 2008: 698-707.
42 ZHANGY, GALLIMOREM, BINGHAMC, et al. Hybrid hierarchical clustering-piecewise aggregate approximation, with applications[J]. International Journal of Computational Intelligence and Applications, 2016, 15(4): 164-181.
43 RENH, LIUM, LIZ, et al. A piecewise aggregate pattern representation approach for anomaly detection in time series [J]. Knowledge-Based Systems, 2017, 135: 29-39.
44 ZHANGC, CHENY, YINA, et al. An improvement of PAA on trend-based approximation for time series [C]// Proceedings of the 2018 18th International Conference on Algorithms and Architectures for Parallel Processing. Berlin: Springer, 2018: 248-262.
45 PAVLIDIST, HORWITZS L. Segmentation of plane curves [J]. IEEE Transactions on Computers, 1974, 23(8): 860-870.
46 KEOGHE, CHAKRABARTIK, PAZZANIM, et al. Dimensionality reduction for fast similarity search in large time series databases [J]. Knowledge Information System, 2001, 3(3): 263-286.
47 PRATK B, FINKE. Search for patterns in compressed time series[J]. International Journal of Image and Graphics, 2002, 2(1): 89-106.
48 XIAOH, FENGX-F, HUY-F. A new segmented time warping distance for data mining in time series database [C]// Proceeding of the 2004 International Conference on Machine Learning and Cybernetics. Piscataway: IEEE, 2004: 1277-1281.
49 詹艳艳,徐荣聪,陈晓云.基于插值边缘算子的时间序列模式表示[J].模式识别与人工智能,2007,20(3):421-427. ZHANY Y, XUR C, CHENX Y. Time series pattern representation based on interpolation edge operator [J]. Pattern Recognition and Artificial Intelligence, 2007, 20(3): 421-427.
50 赵建秀,王洪国,邵增珍,等.一种基于信息熵的时间序列分段线性表示方法[J].计算机应用研究,2013,30(8):2391-2394. ZHAOJ X, WANGH G, SHAOZ Z, et al. A piecewise linear representation of time series based on information entropy [J]. Application Research of Computers , 2013, 30(8): 2391-2394.
51 WANGJ, YUANH, WUQ, et al. A piecewise linear representation based on compression ratio [C]// Proceedings of the 2015 Prognostics & System Health Management Conference. Piscataway: IEEE, 2015: 1-5.
52 JIC, LIUS, YANGC, et al. A piecewise linear representation method based on importance data points for time series data [C]// Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2016: 111-116.
53 孙志伟,董亮亮,马永军.一种基于重要点的时间序列分段算法[J].计算机工程与应用,2018,54(18):250-255. SUNZ Y, DONGL L ,MAY J. A time series segmentation algorithm based on important points [J]. Computer Engineering and Applications, 2018, 54(18): 250-255.
54 LINJ, KEOGHE, LONARDIS. A symbolic representation of time series, with implications for streaming algorithms [C]// Proceedings of the Eighth ACM SIGMOD International Conference on Management of Data Workshop on Research Issues in Data Mining and Knowledge Discovery. New York: ACM, 2003: 2-11.
55 KEIICHIT, TATSUHIROS, TAKUMII. Time series classification using MACD-histogram-based SAX and its performance evaluation [C]// Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2016: 2419-2424.
56 WANGZ, OATEST. Pooling SAX-BoP approaches with boosting to classify multivariate synchronous physiological time series data[C]// Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference. Menlo Park: AAAI Press, 2015: 335-340.
57 SUNY, LIJ, LIUJ, et al. An improvement of symbolic aggregate approximation distance measure for time series [J]. Neurocomputing, 2014, 138(11): 189-198.
58 ZANC T, YAMANAH. An improved symbolic aggregate approximation distance measure based on its statistical features [C]// Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. New York: ACM, 2016: 72-80.
59 ZHANP, HUY, ZHANGQ, et al. Feature-based dividing symbolic time series representation for streaming data processing [C]// Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education. Washington, DC: IEEE Computer Society, 2018: 817-823.
60 ZHANGK, LIY, CHAIY, et al. Trend-based symbolic aggregate approximation for time series representation [C]// Proceedings of the 30th Chinese Control and Decision Conference. Piscataway: IEEE, 2018: 2234-2240.
61 吕玉红.时间序列异常检测算法的研究与应用[D].成都:电子科技大学,2018:24-57. LYU Y H. Research and application of time series anomaly detection algorithm [D]. Chengdu: University of Electronic Science and Technology of China, 2018: 24-57.
62 AGRAWALR, FALOUTSOSC, SWAMIA, et al. Efficient similarity search in sequence databases [C]// Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, LNCS 730. Berlin: Springer, 1993: 69-84.
63 GABORD. Theory of communication [J]. Journal of Institute of Electrical Engineers, 1996, 93(26): 429-459.
64 范立朋.斜拉桥健康监测数据特征分析与重车荷载识别[D].上海:华东理工大学,2016:23-26. FANL P. Characteristics analysis of health monitoring data of cable stayed bridge and recognition of heavy vehicle load [D]. Shanghai: East China University of Science and Technology, 2016: 23-26.
65 CHANK, FUW. Efficient time series matching by wavelets[C]// Proceedings of the 15th International Conference on Data Engineering. Washington, DC: IEEE Computer Society, 1999: 126-133.
66 TSENGV S, CHENC H, HUANGP C, et al. Cluster-based genetic segmentation of time series with DWT [J]. Pattern Recognition Letters, 2009, 30(13): 1190-1197.
67 CHENY, ZHAOQ, HUB, et al. A method of removing ocular artifacts from EEG using discrete wavelet transform and Kalman filtering [C]// Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2016: 1485-1492.
68 KHOKHARS, ZIN A A M , MEMONA P , et al. A new optimal feature selection algorithm for classification of power quality disturbances using discrete wavelet transform and probabilistic neural network [J]. Measurement, 2017, 95: 246-259.
69 贾瑞.多维时间序列数据挖掘技术研究[D].南京:南京航空航天大学,2008:1-52. JIAR. Research on multidimensional time series data mining technology [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 1-52.
70 BOX G E, JENKINSG M. Time series analysis: forecasting and control rev. ed.[J]. Journal of Marketing Research, 1976, 31(4): 238-242.
71 黄文杰,曹鸿兴,顾岚,等.时间序列的ARIMA季节模型在长期预报中的应用[J].科学通报,1980,25(22):1030-1032. HUANGW J, CAOH X, GUL, et al. Application of ARIMA seasonal model of time series in long-term forecasting [J]. Chinese Science Bulletin, 1980, 25(22): 1030-1032.
72 冯丹,韩晓娜,赵文娟,等.中国内地法定报告传染病预测和监测的ARIMA模型[J].疾病控制杂志,2007,11(2):140-143. FENGD, HANX N, ZHAOW J, et al. ARIMA model for the prediction and surveillance of statutory infectious diseases in mainland China [J]. Journal of Disease Control, 2007, 11(2): 140-143.
73 罗静,杨书,张强,等.时间序列ARIMA模型在艾滋病疫情预测中的应用[J].重庆医学,2012,41(13):1255-1256. LUOJ, YANGS, ZHANGQ, et al. Application of time series ARIMA model in AIDS epidemic prediction [J]. Chongqing Medical Science, 2012, 41(13): 1255-1256.
74 涂小萌,陈强国.基于ARIMA-LSSVM混合模型的犯罪时间序列预测[J].电子技术应用,2015,41(2):160-162. TUX M, CHENG Q. Prediction of crime time series based on ARIMA-LSSVM hybrid model [J]. Application of Electronic Technology, 2015, 41(2): 160-162.
75 KHANDELWALI, SATIJAU, ADHIKARIR. Efficient financial time series forecasting model using DWT decomposition [C]// Proceedings of the 2015 IEEE International Conference on Electronics, Computing and Communication Technologies. Piscataway: IEEE, 2015: 1-5.
76 陈兴蜀,江天宇,曾雪梅,等.基于多维时间序列分析的网络异常检测[J].工程科学与技术,2017,49(1):144-150. CHENX S, JIANGT Y, ZENGX M, et al. Network anomaly detection based on multi-dimensional time series analysis [J]. Engineering Science and Technology,2017,49(1): 144-150.
77 ZENGJ, ZHANGL, SHIG, et al. An ARIMA based real-time monitoring and warning algorithm for the anomaly detection [C]// Proceedings of the 2017 IEEE 23rd International Conference on Parallel and Distributed Systems. Piscataway: IEEE, 2017: 469-476.
78 MADANR, SARATHIMANGIPUDIP. Predicting computer network traffic: a time series forecasting approach using DWT, ARIMA and RNN [C]// Proceedings of the IEEE 2018 Eleventh International Conference on Contemporary Computing. Piscataway: IEEE, 2018: 1-5.
79 刘春红,杨亮,邓河,等.基于ARIMA和BP神经网络的猪舍氨气浓度预测[J].中国环境科学,2019,39(6):2320-2327. LIUC H, YANGL, DENGH, et al. Prediction of ammonia concentration in pigsty based on ARIMA and BP neural network [J]. Environmental Science in China, 2019, 39(6): 2320-2327.
80 BAUML E, PETRIET, SOULESG, et al. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains [J]. The Annals of Mathematical Statistics, 1970, 41(1): 164-171.
81 QIAOY, XINX W, BIN Y, et al. Anomaly intrusion detection method based on HMM [J]. Electronics Letters, 2002, 38(13): 663-664.
82 李和平,胡占义,吴毅红,等.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. LIH P, HUZ Y, WUY H, et al. Behavior modeling and anomaly detection based on semi-supervised learning [J]. Journal of Software, 2007, 18(3): 527-537.
83 HOANGX A, HUJ. An efficient hidden Markov model training scheme for anomaly intrusion detection of server applications based on system calls[C]// Proceeding of the 2004 12th IEEE International Conference on Networks. Piscataway: IEEE, 2004: 470-474.
84 孙美凤,黄飞,陈云著,等.基于特征模式的马尔可夫链异常检测模型[J].计算机工程,2008,32(24):155-157. SUNM F, HUANGF, CHENY Z, et al. Markov chain anomaly detection model based on feature pattern[J]. Computer Engineering, 2008, 32(24): 155-157.
85 王琼,倪桂强,潘志松,等.基于改进隐马尔可夫模型的系统调用异常检测[J].数据采集与处理,2009,24(4):508-513. WANGQ, NIG Q, PANZ S, et al. System call anomaly detection based on improved hidden Markov model [J]. Journal of Data Acquisition and Processing, 2009, 24(4): 508-513.
86 NIINAG, DOUZONOH, ENDAT, et al. HMM training by using a self-organizing map for time series prediction [C]// Proceedings of the 2017 International Conference on Machine Learning & Computing. New York: ACM, 2017: 147-152.
87 BHUSARIV, PATILS. Study of hidden Markov model in credit card fraudulent detection [J]. International Journal of Computer Applications, 2011, 20(5): 33-36.
88 GUANX, RAICHR, WONGW K. Efficient multi-instance learning for activity recognition from time series data using an auto-regressive hidden Markov model [C]// Proceedings of the 2016 International Conference on International Conference on Machine Learning. New York: ACM, 2016: 2330-2339.
89 KABIRM H, HOQUEM R, THAPAK, et al. Two-layer hidden Markov model for human activity recognition in home environments[J]. International Journal of Distributed Sensor Networks, 2016, 2016: Article No. 15.
90 ZHENGH, WANGR Y, WANGY F, et al. Fault diagnosis of photovoltaic inverters using hidden Markov model [C]// Proceedings of the 36th Chinese Control Conference. Piscataway: IEEE, 2017: 7290-7295.
91 FORRESTS, PERELSONA S, ALLENL, et al. Self-nonself discrimination in a computer [C]// Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy. Piscataway: IEEE, 1994: 202-212.
92 GONZALEZF A. A study of artificial immune systems applied to anomaly detection [D]. Memphis: University of Memphis, 2003:32-148.
93 董永贵,孙照焱,贾惠波.时间序列中异常值检测的负向选择算法[J].机械工程学报,2004,40(10):30-34. DONGY G, SUNZ Y, JIAH B. Negative selection algorithm for outliers detection in time series [J]. Chinese Journal of Mechanical Engineering, 2004, 40(10): 30-34.
94 汪慧敏,高晓智,黄显林,等.基于改进负选择算法的异常检测[J].计算机仿真,2008,25(5):334-338. WANGH M, GAOX Z, HUANGX L, et al. Anomaly detection based on improved negative selection algorithm [J]. Computer Simulation,2008, 25(5): 334-338.
95 GONGM, ZHANGJ, MAJ, et al. An efficient negative selection algorithm with further training for anomaly detection [J]. Knowledge-Based Systems, 2012, 30(2): 185-191.
96 WENC, DINGX M, LIT, et al. Negative selection algorithm based on grid file of the feature space [J]. Knowledge-Based Systems, 2014, 56(C): 26–35.
97 IDRISI, SELAMATA, NGUYENN T, et al. A combined negative selection algorithm — particle swarm optimization for an email spam detection system [J]. Engineering Applications of Artificial Intelligence, 2015, 39: 33-44.
98 LID, LIUS L, ZHANGH L. A boundary-fixed negative selection algorithm with online adaptive learning under small samples for anomaly detection [J]. Engineering Applications of Artificial Intelligence, 2016, 50(C): 93-105.
99 MACQUEENJ B. Some methods for classification and analysis of multivariate observations [C]// Proceeding of 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley:AMS,1967: 281-297.
100 TZORTZISG, LIKASA. The minmax K-means clustering algorithm[J]. Pattern Recognition,2011,44(4):866-876.
101 HANZ J. An adaptive K-means initialization method based on data density [J]. Computer Applications and Software, 2014,31(2):182-187.
102 左进,陈泽茂.基于改进K均值聚类的异常检测算法[J].计算机科学,2016,43(8):258-261. ZUOJ, CHENZ M. Anomaly detection algorithm based on improved K-means clustering [J]. Computer Science, 2016,43(8):258-261.
103 ZHANGT F , MAF M. Improved rough k-means clustering algorithm based on weighted distance measure with Gaussian function[J]. International Journal of Computer Mathematics, 2017, 94(4):663-675.
104 翁小清,沈钧毅.多变量时间序列例外模式的识别[J].模式识别与人工智能,2007,20(3):336-342. WENGX Q, SHENJ Y. Recognition of exception patterns in multivariate time series [J]. Pattern Recognition and Artificial Intelligence,2007, 20(3):336-342.
105 王欣.两阶段的多元时间序列异常检测算法[J].计算机应用研究,2011,28(7):2466-2469. WANGX. Two-stage multivariate time series anomaly detection algorithm [J]. Computer Application Research, 2011, 28(7): 2466-2469.
106 陈运文,吴飞,吴庐山,等.基于异常检测的时间序列研究[J].计算机技术与发展,2015(4):166-170. CHENY W, WUF, WUL S, et al. Time series research based on anomaly detection [J]. Computer Technology and Development, 2015(4):166-170.
107 陈光英,张千里,李星.基于SVM分类机的入侵检测系统[J]. 通信学报, 2002, 23(5):51-56. CHENG Y, ZHANGQ L, LIX. Intrusion detection system based on SVM classifier [J]. Journal of China Institute of Communications, 2002, 23(5):51-56.
108 KAURR, KANGS S. An enhancement in classifier support vector machine to improve plant disease detection [C]// Proceedings of the 2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education. Piscataway: IEEE, 2016: 135-140.
109 RALAIVOLAL, D’ALCHE-BUCF. Incremental support vector machine learning: a local approach [C]// Proceedings of the 2001 International Conference on Artificial Neural Networks, LNCS 2130. Berlin: Springer, 2001: 322-330.
110 孙德山.支持向量机分类与回归方法研究[D].长沙:中南大学,2004:17-18. SUND S. Research on classification and regression of support vector machines [D]. Changsha: Central South University, 2004:17-18.
111 HUM, JIZ, YANK, et al. Detecting anomalies in time series data via a meta-feature based approach [J]. IEEE Access, 2018, 6: 27760-27776. |