1 |
HINAMI R, MEI T, SATOH S. Joint detection and recounting of abnormal events by learning deep generic knowledge[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3619-3627. 10.1109/iccv.2017.391
|
2 |
LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection: a new baseline[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6536-6545. 10.1109/cvpr.2018.00684
|
3 |
PANG G, YAN C, SHEN C, et al. Self-trained deep ordinal regression for end-to-end video anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12173-12182. 10.1109/cvpr42600.2020.01219
|
4 |
RAVANBAKHSH M, SANGINETO E, NABI M, et al. Training adversarial discriminators for cross-channel abnormal event detection in crowds[C]// Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2019: 1896-1904. 10.1109/wacv.2019.00206
|
5 |
DIETTERICH T G, LATHROP R H, LOZANO-PÉREZ T. Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1/2): 31-71. 10.1016/s0004-3702(96)00034-3
|
6 |
SULTANI W, CHEN C, SHAH M. Real-world anomaly detection in surveillance videos[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6479-6488. 10.1109/cvpr.2018.00678
|
7 |
ZHANG J, QING L, MIAO J. Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection[C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 4030-4034. 10.1109/icip.2019.8803657
|
8 |
WAN B, FANG Y, XIA X, et al. Weakly supervised video anomaly detection via center-guided discriminative learning[C]// Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2020: 1-6. 10.1109/icme46284.2020.9102722
|
9 |
ZHONG J-X, LI N, KONG W, et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1237-1246. 10.1109/cvpr.2019.00133
|
10 |
CARREIRA J, ZISSERMAN A. Quo Vadis, action recognition? A new model and the kinetics dataset[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6299-6308. 10.1109/cvpr.2017.502
|
11 |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2023-05-01]. . 10.1561/2200000056
|
12 |
GRAVES A. Long short-term memory[C]// Supervised Sequence Labelling with Recurrent Neural Networks. Berlin: Springer, 2012: 37-45. 10.1007/978-3-642-24797-2_4
|
13 |
YAO R, LIU C, ZHANG L, et al. Unsupervised anomaly detection using variational auto-encoder based feature extraction[C]// Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE, 2019: 1-7. 10.1109/icphm.2019.8819434
|
14 |
WEN Y, ZHANG K, LI Z, et al. A discriminative feature learning approach for deep face recognition[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 499-515. 10.1007/978-3-319-46478-7_31
|
15 |
SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 815-823. 10.1109/cvpr.2015.7298682
|
16 |
ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 589-597. 10.1109/cvpr.2016.70
|
17 |
LU C, SHI J, JIA J. Abnormal event detection at 150 FPS in MATLAB[C]// Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2720-2727. 10.1109/iccv.2013.338
|
18 |
STEINBRÜCKER F, POCK T, CREMERS D. Large displacement optical flow computation without warping[C]// Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 1609-1614. 10.1109/iccv.2009.5459364
|
19 |
GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[C]// Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. New York: JMLR, 2010: 249-256.
|
20 |
SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
|
21 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2023-05-01]. .
|
22 |
IONESCU R T, KHAN F S, M-I GEORGESCU, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7842-7851. 10.1109/cvpr.2019.00803
|
23 |
M-I GEORGESCU, BARBALAU A, IONESCU R T, et al. Anomaly detection in video via self-supervised and multi-task learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway: IEEE, 2021: 12742-12752. 10.1109/cvpr46437.2021.01255
|
24 |
GEORGESCU M I, IONESCU R T, KHAN F S, et al. A background-agnostic framework with adversarial training for abnormal event detection in video[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4505-4523.
|