Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (7): 1863-1872.DOI: 10.11772/j.issn.1001-9081.2019112034
• Artificial intelligence • Next Articles
Received:
2019-11-04
Revised:
2020-03-28
Online:
2020-07-10
Published:
2020-05-19
通讯作者:
顾克江
作者简介:
裴焱栋(1988-),男,江苏扬州人,博士研究生,CCF会员,主要研究方向:智能交通、Petri网;顾克江(1958-),男,江苏苏州人,教授级高级工程师,CCF高级会员,主要研究方向:模式识别、图像处理、计算机图形学。
CLC Number:
PEI Yandong, GU Kejiang. Overview of content and semantic based 3D model retrieval[J]. Journal of Computer Applications, 2020, 40(7): 1863-1872.
裴焱栋, 顾克江. 基于内容和语义的三维模型检索综述[J]. 计算机应用, 2020, 40(7): 1863-1872.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019112034
[1] AIGRAIN P,ZHANG H,PETKOVIC D. Content-based representation and retrieval of visual media:a state-of-the-art review[J]. Multimedia Tools and Applications,1996,3(3):179-202. [2] 潘翔, 张三元, 张引, 等. 一种基于拓扑连接图的三维模型检索方法[J]. 计算机学报,2004,27(9):1250-1255.(PAN X, ZHANG S Y,ZHANG Y,et al. 3D model retrieval based topology connection graph[J]. Chinese Journal of Computers,2004,27(9):1250-1255.) [3] 王新颖. 三维模型检索中基于语义方法的若干问题研究[D]. 长春:吉林大学,2009:15. (WANG X Y. Research on problems based on semantic method in 3D model retrieval[D]. Changchun:Jilin University,2009:15.) [4] 杨育彬, 林珲, 朱庆. 基于内容的三维模型检索综述[J]. 计算机学报,2004,27(10):1297-1310. (YANG Y B,LIN H,ZHU Q. Content-based 3d model retrieval:a survey[J]. Chinese Journal of Computers,2004,27(10):1297-1310.) [5] BIMBO A D,PALA P. Content-based retrieval of 3D models[J]. ACM Transactions on Multimedia Computing,Communications, and Applications,2006,2(1):20-43. [6] TAM G K L,LAU R W H. Deformable model retrieval based on topological and geometric signatures[J]. IEEE Transactions on Visualization and Computer Graphics,2007,13(3):470-482. [7] GAO Y,WANG M,JI R,et al. 3-D object retrieval with Hausdorff distance learning[J]. IEEE Transactions on Industrial Electronics, 2013,61(4):2088-2098. [8] ELAD M,TAL A,AR S. Content based retrieval of VRML objects-an iterative and interactive approach[C]//Proceedings of the 2001 Eurographics Workshop on Multimedia. Vienna:Springer,2001:107-118. [9] MIN P,KAZHDAN M,FUNKHOUSER T. A comparison of text and shape matching for retrieval of online 3D models[C]//Proceedings of the 8th International Conference on Theory and Practice of Digital Libraries,LNCS 3232. Berlin:Springer,2004:209-220. [10] SMEULDERS A W M,WORRING M,SANTINI S,et al. Content-based image retrieval at the end of the early years[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(12):1349-1380. [11] ONASOGLOU E,DARAS P. Semantic force relevance feedback, content-free 3D object retrieval and annotation propagation:bridging the gap and beyond[J]. Multimedia Tools and Applications, 2008,39(2):217-241. [12] REGLI W C,CICIRELLO V A. Managing digital libraries for computer-aided design[J]. Computer Aided Design,2000,32(2):119-132. [13] ZAHARIA T,PRETEUX F J. 3D-shape-based retrieval within the MPEG-7 framework[C]//Proceedings of SPIE 4304,Nonlinear Image Processing and Pattern Analysis XII. Bellingham, WA:SPIE,2001:133-145. [14] RAMANI K,IYER N,LOU K,et al. Methods,systems,and data structures for performing searches on three dimensional objects:US 8429174[P]. 2013-04-23. [15] DROST B,ULRICH M,NAVAB N,et al. Model globally,match locally:efficient and robust 3D object recognition[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington,DC:IEEE Computer Society,2010:998-1005. [16] 李海生, 孙莉, 吴晓群, 等. 基于模型内二面角分布直方图的非刚性三维模型检索[J]. 计算机辅助设计与图形学学报,2017, 29(6):1128-1134.(LI H S,SUN L,WU X Q,et al. Non-rigid 3D shape retrieval based on inner dihedral angle histogram[J]. Journal of Computer-Aided Design and Computer Graphics,2017, 29(6):1128-1134.) [17] LIAN Z,GODIL A,BUSTOS B,et al. SHREC'11 track:shape retrieval on non-rigid 3D watertight meshes[C]//Proceedings of the 4th Eurographics Workshop on 3D Object Retrieval. Goslar:Eurographics Association,2011:79-88. [18] PICKUP D,SUN X,ROSIN P L,et al. Shape retrieval of nonrigid 3D human models[J]. International Journal of Computer Vision,2016,120(2):169-193. [19] 张开兴, 杭晟煜, 王金星, 等. 基于模拟退火的三维模型典型结构挖掘与相似性评价[J]. 农业机械学报,2018,49(3):402-410.(ZHANG K X,HANG S Y,WANG J X,et al. Typical structure mining in 3D model and similarity evaluation based on simulated annealing algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(3):402-410.) [20] SCHMITT W,SOTOMAYOR J L,TELEA A,et al. A 3D shape descriptor based on depth complexity and thickness histograms[C]//Proceedings of the 28th SIBGRAPI Conference Graphics, Patterns and Images. Piscataway:IEEE,2015:226-233. [21] NOVOTNI M,KLEIN R. 3D Zernike descriptors for content based shape retrieval[C]//Proceedings of the 8th ACM Symposium on Solid Modeling and Applications. New York:ACM, 2003:216-225. [22] HOSNY K M. Fast and low-complexity method for exact computation of 3D Legendre moments[J]. Pattern Recognition Letters, 2011,32(9):1305-1314. [23] 杨建伟, 金德君, 卢政大. 分数阶的Zernike矩[J]. 计算机辅助设计与图形学学报,2017,29(3):479-484. (YANG J W,JIN D J,LU Z D. Fractional order Zernike moment[J]. Journal of Computer-Aided Design and Computer Graphics,2017,29(3):479-484.) [24] 马自萍, 康宝生, 马金林. W-系统矩和Fourier变换下Volume Descriptors不变特征的三维模型检索[J]. 计算机辅助设计与图形学学报,2014,26(4):609-616. (MA Z P,KANG B S,MA J L. 3D model retrieval based on W-systems and Volume Descriptors invariance of Fourier transform[J]. Journal of Computer-Aided Design and Computer Graphics,2014,26(4):609-616.) [25] 张亚雷. 三维模型整体与局部相似性评价方法研究[D]. 泰安:山东农业大学,2017:3.(ZHANG Y L. Research on the evaluation method of global and local similarity of 3D model[D]. Tai'an:Shandong Agricultural University,2017:3.) [26] PAQUET E,RIOUX M. Nefertiti:a query by content software for three-dimensional models databases management[J]. Image and Vision Computing,1999,17(2):157-166. [27] YU M,ATMOSUKARTO I,LEOW W K,et al. 3D model retrieval with morphing-based geometric and topological feature maps[C]//Proceedings of the 2003 IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2003:656-661. [28] PU Y C,DU W C,HUANG C H,et al. Invariant feature extraction for 3D model retrieval:an adaptive approach using Euclidean and topological metrics[J]. Computers and Mathematics with Applications,2012,64(5):1217-1225. [29] de OLIVEIRA W A A,BARCELOS C,GIRALDI G,et al. HSD:a 3D shape descriptor based on the Hilbert curve and a reduction dimensionality approach[C]//Proceedings of the 2012 IEEE International Conference on Systems,Man,and Cybernetics. Piscataway:IEEE,2012:156-161. [30] BAI X,RAO C,WANG X. Shape vocabulary:a robust and efficient shape representation for shape matching[J]. IEEE Transactions on Image Processing,2014,23(9):3935-3949. [31] SUZUKI M T,KATO T,OTSU N. A similarity retrieval of 3D polygonal models using rotation invariant shape descriptors[C]//Proceedings of the 2000 IEEE International Conference on Systems, Man,and Cybernetics. Piscataway:IEEE,2000:2946-2952. [32] ŠATNÍK A,ORJEŠEK R,HUDEC R,et al. A novel approach for 3D model recognition based on SSCD[C]//Proceeding of the 2016 ELEKTRO. Piscataway:IEEE,2016:96-99. [33] 陈瑞清. 基于体素化的三维形体特征提取与匹配[D]. 上海:上海交通大学,2015:18-20. (CHEN R Q. 3D shape feature extraction and matching based on voxelization[D]. Shanghai:Shanghai Jiao Tong University,2015:18-20.) [34] XU X,TODOROVIC S. Beam search for learning a deep convolutional neural network of 3D shapes[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway:IEEE,2016:3506-3511. [35] SEDAGHAT N,ZOLFAGHARI M,AMIRI E. Orientation-boosted voxel nets for 3D object recognition[EB/OL].[2018-03-02]. https://arxiv.org/pdf/1604.03351.pdf. [36] GARCIA-GARCIA A, GOMEZ-DONOSO F, GARCÍA-RODRÍGUEZ J,et al. PointNet:a 3D convolutional neural network for real-time object class recognition[C]//Proceedings of the 2016 International Joint Conference on Neural Networks. Piscataway:IEEE,2016:1578-1584. [37] RIEGLER G,ULUSOY A O,GEIGER A. OctNet:learning deep 3D representations at high resolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6620-6629. [38] WANG P S,LIU Y,GUO Y X,et al. O-CNN:octree-based convolutional neural networks for 3D shape analysis[J]. ACM Transactions on Graphics,2017,36(4):72-83. [39] VRANIC D V,SAUPE D,RICHTER J. Tools for 3D-object retrieval:Karhunen-Loeve transform and spherical harmonics[C]//Proceedings of the IEEE 4th Workshop on Multimedia Signal Processing. Piscataway:IEEE,2001:293-298. [40] ADAN SALIH A A,YOUSSEF C. Spatiotemporal representation of 3D skeleton joints-based action recognition using modified spherical harmonics[J]. Pattern Recognition Letters,2016,83(Pt 1):32-41. [41] JALLOULI M,KHALIFA W B,MABROUK A B,et al. Spherical harmonics entropy for optimal 3D modeling[EB/OL].[2018-05-18]. https://arxiv.org/pdf/1805.08084.pdf. [42] MADEMLIS A,DARAS P,TZOVARAS D,et al. Ellipsoidal harmonics for 3-D shape description and retrieval[J]. IEEE Transactions on Multimedia,2009,11(8):1422-1433. [43] WU Y,AU O K C,TAI C L,et al. HIRM:a handle-independent reduced model for incremental mesh editing[J]. Computer Aided Geometric Design,2015,35/36:56-68. [44] WU Y,LU T,YUAN Z,et al. FreeScup:a novel platform for assisting sculpture pose design[J]. IEEE Transactions on Multimedia,2017,19(1)183-195. [45] WANG Y,JACOBSON A,BARBIČ J,et al. Linear subspace design for real-time shape deformation[J]. ACM Transactions on Graphics,2015,34(4):No. 57. [46] 叶文权, 廖炜婷. 基于三维激光获取点云的三维模型构建[J]. 智能计算机与应用,2017,7(3):68-71,75. (YE W Q,LIAO W T. Implementation research on the 3D model construction of the point cloud based on 3D laser[J]. Intelligent Computer and Applications,2017,7(3):68-71,75.) [47] CHEN J Y,HSU P C,LIN C H. Model retrieval based on point cloud encoding of airborne lidar[C]//Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE,2012:4711-4713. [48] CHEN J Y,LIN C H,HSU P C,et al. Point cloud encoding for 3D building model retrieval[J]. IEEE Transactions on Multimedia,2014,16(2):337-345. [49] BRANDT C,VON TYCOWICZ C,HILDEBRANDT K. Geometric flows of curves in shape space for processing motion of deformable objects[J]. Computer Graphics Forum,2016,35(2):295-305. [50] HEEREN B,RUMPF M,WARDETZKY M,et al. Time-discrete geodesics in the space of shells[J]. Computer Graphics Forum, 2012,31(5):1755-1764. [51] LI Y,LIU Y,SUN R,et al. Multi-view point cloud registration with adaptive convergence threshold and its application in 3D model retrieval[EB/OL].[2019-09-20]. https://doi.org/10.1007/s11042-019-7524-5. [52] PICKUP D,SUN X,ROSIN P L,et al. Shape retrieval of non-rigid 3d human models[J]. International Journal of Computer Vision,2016,120(2):169-193. [53] HILAGA M,SHINAGAWA Y,KOHMURA T,et al. Topology matching for fully automatic similarity estimation of 3D shapes[C]//Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM,2001:203-212. [54] BIASOTTI S,CERRI A,BRONSTEIN A,et al. Recent trends, applications,and perspectives in 3D shape similarity assessment[J]. Computer Graphics Forum,2016,35(6):87-119. [55] LI B, GODIL A, JOHAN H. Hybrid shape descriptor and meta similarity generation for non-rigid and partial 3D model retrieval[J]. Multimedia Tools and Applications, 2014, 72(2):1531-1560. [56] SIRIN Y,DEMIRCI M F. 2D and 3D shape retrieval using skeleton filling rate[J]. Multimedia Tools and Applications,2017,76(6):7823-7848. [57] LI C,HAMZA A B. Skeleton path based approach for non-rigid 3D shape analysis and retrieval[C]//Proceedings of the 14th International Workshop on Combinatorial Image Analysis,LNCS 6636. Berlin:Springer,2011:84-95. [58] BAI X,BAI S,ZHU Z,et al. 3D shape matching via two-layer coding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(12):2361-2373. [59] 朱文博, 耿国庆, 刘阳阳, 等. 基于骨架树的机械零件三维模型检索方法[J]. 机械工程学报,2016,52(13):204-212.(ZHU W B,GENG G Q,LIU Y Y,et al. 3D model retrieval method of mechanical parts based on skeleton tree[J]. Journal of Mechanical Engineering,2016,52(13):204-212.) [60] LOFFLER J. Content-based retrieval of 3D models in distributed web databases by visual shape information[C]//Proceedings of the 2002 International Conference on Information Visualization. Piscataway:IEEE,2000:82-87. [61] BUSTOS B,KEIM D A,PANSE C,et al. 2D maps for visual analysis and retrieval in large multi-feature 3D model databases[C]//Proceedings of the 2004 IEEE Visualization Conference. Piscataway:IEEE,2004:1-2. [62] JOHNSON,HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(5):433-449. [63] PU J,LIU Y,XIN G,et al. 3D model retrieval based on 2D slice similarity measurements[C]//Proceedings of the 2nd International Symposium on 3D Data Processing,Visualization and Transmission. Piscataway:IEEE,2004:95-101. [64] GAO Y,DAI Q,WANG M,et al. 3D model retrieval using weighted bipartite graph matching[J]. Signal Processing:Image Communication,2011,26(1):39-47. [65] SU H,MAJI S,KALOGERAKIS E,et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:945-953. [66] SFIKAS K,THEOHARIS T,PRATIKAKIS I. ROSy+:3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval[J]. International Journal of Computer Vision,2011,91(3):262-279. [67] XIAO Q,LI Y. A 3D model retrieval approach based on Bayesian networks light field descriptor[C]//Proceedings of SPIE 7651,International Conference on Space Information Technology. Bellingham,WA:SPIE,2009:69-79. [68] 李海生, 董水龙, 赵天宇, 等. 利用深度图像改进光场描述符的三维模型检索算法[J]. 北京邮电大学学报,2016,39(4):56-59.(LI H S,DONG S L,ZHAO T Y,et al. Improved light field descriptor using depth images for 3D model retrieval[J]. Journal of Beijing University of Posts and Telecommunications,2016,39(4):56-59.) [69] LI B,JOHAN H. View context based 2D sketch-3D model alignment[C]//Proceedings of the 2011 IEEE Workshop on Applications of Computer Vision. Piscataway:IEEE,2011:45-50. [70] ZULKOFFLI Z,BAKAR E A. Pose estimation using 1D Fourier transform and Euclidean distance matching of CAD model and inspected model part[C]//Proceedings of the 2nd International Manufacturing Engineering Conference and 3rd Asia-Pacific Conference on Manufacturing Systems. Bristol:IOP Publishing:No. 012038. [71] BAI S,BAI X,ZHOU Z,et al. GIFT:a real-time and scalable 3D shape search engine[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:5023-5032. [72] YASSEEN Z,VERROUST-BLONDET A,NASRI A. View selection for sketch-based 3D model retrieval using visual part shape description[J]. The Visual Computer,2017,33(5):565-583. [73] LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision,2004,60(2):91-110. [74] OSADA K,FURUYA T,OHBUCHI R. SHREC'08 entry:local volumetric features for 3D model retrieval[C]//Proceedings of the 2008 IEEE International Conference on Shape Modeling and Applications. Piscataway:IEEE,2008:245-246. [75] GRZEGORZEK M. A system for 3D texture-based probabilistic object recognition and its applications[J]. Pattern Analysis and Applications,2010,13(3):333-348. [76] FURUYA T,OHBUCHI R. Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features[C]//Proceedings of the 2009 ACM International Conference on Image and Video Retrieval. New York:ACM,2009:No. 26. [77] XUE T,LIU J,TANG X. Example-based 3D object reconstruction from line drawings[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2012:302-309. [78] XU B,CHANG W,SHEFFER A,et al. True2Form:3D curve networks from 2D sketches via selective regularization[J]. ACM Transactions on Graphics,2014,33(4):No. 131. [79] YE Y,LI B,LU Y. 3D sketch-based 3D model retrieval with convolutional neural network[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway:IEEE,2017:2936-2941. [80] LI X,CAO Q,WEI S. 3D object retrieval based on multi-view convolutional neural networks[J]. Multimedia Tools and Applications,2017,76(19):20111-20124. [81] ZHU F,XIE J,FANG Y. Learning cross-domain neural networks for sketch-based 3D shape retrieval[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2016:3683-3689. [82] SHI B,BAI S,ZHOU Z,et al. DeepPano:deep panoramic representation for 3-D shape recognition[J]. IEEE Signal Processing Letters,2015,22(12):2339-2343. [83] SINHA A,BAI J,RAMANI K. Deep learning 3D shape surfaces using geometry images[C]//Proceedings of the 14th European Conference Computer Vision,LNCS 9910. Cham:Springer,2016:223-240. [84] SU H,MAJI S,KALOGERAKIS E,et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:945-953. [85] WANG C,PELILLO M,SIDDIQI K,et al. Dominant set clustering and pooling for multi-view 3D object recognition[EB/OL].[2019-06-22]. https://arxiv.org/pdf/1906.01592.pdf. [86] MA Y,ZHENG B,GUO Y,et al. Boosting multi-view convolutional neural networks for 3D object recognition via view saliency[C]//Proceedings of the 12th Chinese Conference on Image and Graphics Technologies,CCIS 757. Singapore:Springer,2017:199-209. [87] JOHNS E,LEUTENEGGER S,DAVISON A J. Pairwise decomposition of image sequences for active multi-view recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:3813-3822 [88] NIE W,CAO Q,LIU A,et al. Convolutional deep learning for 3D object retrieval[J]. Multimedia Systems,2017,23(3):325-332. [89] FURUYA T,OHBUCHI R. Aggregating sparse binarized local features by summing for efficient 3D model retrieval[C]//Proceedings of the IEEE 2nd International Conference on Multimedia Big Data. Piscataway:IEEE,2016:314-321. [90] BU S,LIU Z,HAN J,et al. Learning high-level feature by deep belief networks for 3-D model retrieval and recognition[J]. IEEE Transactions on Multimedia,2014,16(8):2154-2167. [91] GIORGI D,FROSINI P,SPAGNUOLO M,et al. 3D relevance feedback via multi-level relevance judgements[J]. The Visual Computer,2010,26(10):1321-1338. [92] OHBNCHI R,KOBAYASHI J. Unsupervised learning from a corpus for shape based 3D model retrieval[C]//Proceedings of the 8th ACM Multimedia Information Retrieval. New York:ACM,2006:163-172. [93] ATTENE M,ROBBIANO F,SPAGNUOLO M,et a1. Characterization of 3D shape parts for semantic annotation[J]. ComputerAided Design,2009,41(10):756-763. [94] LENG B,ZENG J,YAO M,et al. 3D object retrieval with multitopic model combining relevance feedback and LDA model[J]. IEEE Transactions on Image Processing,2015,24(1):94-105. [95] LENG B,GUO S,ZHANG X,et al. 3D object retrieval with stacked local convolutional auto encoder[J]. Signal Processing, 2015,112:119-128. [96] ZHANG L,SHUM H P H,SHAO L. Discriminative semantic subspace analysis for relevance feedback[J]. IEEE Transactions on Image Processing,2016,25(3):1275-1287. [97] TONG S,CHANG E. Support vector machine active learning for image retrieval[C]//Proceedings of the 9th ACM Multimedia Conference. New York:ACM,2001:107-118. [98] LI Z,WU Z,KUANG Z,et al. Evidence-based SVM fusion for 3D model retrieval[J]. Multimedia Tools and Applications,2014, 72(2):1731-1749. [99] MEHRDAD V,EBRAHIMNEZHAD H. 3D model retrieval based on linear prediction coding in cylindrical and spherical projections using SVM-OSS[J]. Multimedia Tools and Applications,2015,74(4):1511-1535. [100] KNOPP J,PRASAD M,VAN GOOL L. Orientation invariant 3D object classification using Hough transform based methods[C]//Proceedings of the 2010 ACM Workshop on 3D Object Retrieval. New York:ACM,2010:15-20. [101] WANG B X,JAPKOWICZ N. Boosting support vector machines for imbalanced data sets[J]. Knowledge and Information Systems,2010,25(1):1-20. [102] 董帅. 基于半监督学习方法的相关反馈及其在图像检索中的应用[D]. 北京:北京工业大学,2016:21-30. (DONG S. Relevance feedback based on semi-supervised learning algorithm and its application in image retrieval[D]. Beijing:Beijing University of Technology,2016:21-30.) [103] 彭晏飞, 宋晓男, 武宏, 等. 结合深度学习与相关反馈的遥感图像检索[J]. 中国图象图形学报,2019,24(3):420-434. (PENG Y F,SONG X N,WU H,et al. Remote sensing image retrieval combined with deep learning and relevance feedback[J]. Journal of Image and Graphics,2019,24(3):420-434.) [104] 胡保坤. 三维模型内容检索中的相关反馈和长期学习研究[D]. 杭州:浙江大学,2011:82. (HU B K. Research on relevance feedback and long-term learning in 3D model content retrieval[D]. Hangzhou:Zhejiang University,2011:82.) [105] HOI C H,LYU M R. A novel log-based relevance feedback technique in content-based image retrieval[C]//Proceedings of the 12th Annual ACM International Conference on Multi-media. New York:ACM,2004:34-31. [106] HOU S,LOU K,RAMANI K. SVM-based semantic clustering and retrieval of a 3d model database[J]. Computer-Aided Design and Applications,2013,2(1/2/3/4):155-164. [107] GHASEMI A,MANZURI M T,RABIEE H R,et al. Active oneclass learning by kernel density estimation[C]//Proceedings of the 2011 IEEE International Workshop on Machine Learning for Signal Processing. Piscataway:IEEE,2011:1-6. [108] GHASEMI A,RABIEE H R,FADAEE M,et al. Active learning from positive and unlabeled data[C]//Proceedings of the 11th IEEE International Conference on Data Mining Workshops. Piscataway:IEEE,2011:244-250. [109] TRITTENBACH H,ENGLHARDT A,BÖHM K,et al. An overview and a benchmark of active learning for outlier detection with one-class classifiers[EB/OL].[2019-05-14]. https://arxiv.org/pdf/1808.04759v2.pdf. [110] KEMMLER M,RODNER E,WACKER E S,et al. One-class classification with Gaussian processes[J]. Pattern Recognition, 2013,46(12):3507-3518. [111] ZHANG J,KANG B,JIANG B,et al. A novel sketch-based 3D model retrieval approach by integrating PCA-DAISY descriptor and fisher coding algorithm[J]. International Journal of Innovative Computing Information and Control,2017,13(2):411-427. [112] THAKONG M,PHIMOLTARES S,JAIYEN S,et al. Fast learning and testing for imbalanced multi-class changes in streaming data by dynamic multi-stratum network[J]. IEEE Access,2017, 5:10633-10648. [113] JIA X,KUO B C,CRAWFORD M M. Feature mining for hyperspectral image classification[J]. Proceedings of the IEEE, 2013,101(3):676-697. [114] TOONY Z,LAURENDEAU D,GAGNÉ C. Describing 3D geometric primitives using the Gaussian sphere and the Gaussian accumulator[J]. 3D Research,2015,6(4):No. 42. [115] 阮佳彬, 杨育彬, 林金杰, 等. 基于本体词汇的三维模型语义检索[J]. 计算机科学,2009,36(2):152-154,185.(RUAN J B,YANG Y B,LIN J J,et al. Semantic-based 3D model retrieval using ontology[J]. Computer Science,2009,36(2):152-154,185.) [116] CAMOSSI E,GIANNINI F,MONTI M. Deriving functionality from 3D shapes:ontology driven annotation and retrieval[J]. Computer-Aided Design and Applications, 2007, 4(6):773-782. [117] WANG X,LV T,WANG S,et al. An ontology and SWRL based 3D model retrieval system[C]//Proceedings of the 4th Asia Information Retrieval Symposium,LNCS 4993. Berlin:Springer, 2008:335-344. [118] QIN F,GAO S,YANG X,et al. An ontology-based semantic retrieval approach for heterogeneous 3D CAD models[J]. Advanced Engineering Informatics,2016,30(4):751-768. [119] KASSIMI M A,ELBEQQALI O. Semantic based 3D model retrieval[C]//Proceedings of the 2012 International Conference on Multimedia Computing and Systems. Piscataway:IEEE,2012:195-199. [120] SIKOS L F. A novel ontology for 3D semantics:ontology-based 3D model indexing and content-based video retrieval applied to the medical domain[J]. International Journal of Metadata Semantics and Ontologies,2017,12(1):59-70. [121] HARTUNG M,TERWILLIGER J,RAHM E. Recent advances in schema and ontology evolution[M]//BELLAHSENE Z,BONIFATI A,RAHM E. Schema Matching and Mapping,DCSA. Berlin:Springer,2011:149-190. [122] LMAATI E A,OUAHMAN A A,KADDIOUI M N,et al. 3D virtual world retrieval based on ontology and content[J]. Computer and Information Science,2014,7(2):36-47. [123] 苏畅. 中文本体的自动学习算法研究[J]. 工程技术:引文版, 2016(4):299-300. (SU C. Research on automatic learning algorithm of Chinese ontology[J]. Engineering Technology (Citation),2016(4):299-300.) |
[1] | ZHAO Hong, KONG Dongyi. Chinese description of image content based on fusion of image feature attention and adaptive attention [J]. Journal of Computer Applications, 2021, 41(9): 2496-2503. |
[2] | XIE Defeng, JI Jianmin. Syntax-enhanced semantic parsing with syntax-aware representation [J]. Journal of Computer Applications, 2021, 41(9): 2489-2495. |
[3] | KANG Jun, HUANG Shan, DUAN Zongtao, LI Yixiu. Review of spatio-temporal trajectory sequence pattern mining methods [J]. Journal of Computer Applications, 2021, 41(8): 2379-2385. |
[4] | ZHOU Xianbing, FAN Xiaochao, REN Ge, YANG Yong. Automated English essay scoring method based on multi-level semantic features [J]. Journal of Computer Applications, 2021, 41(8): 2205-2211. |
[5] | LIU Fangming, ZHANG Hong. Cross-modal retrieval algorithm based on multi-level semantic discriminative guided hashing [J]. Journal of Computer Applications, 2021, 41(8): 2187-2192. |
[6] | WU Lidan, XUE Yuyang, TONG Tong, DU Min, GAO Qinquan. Image colorization algorithm based on foreground semantic information [J]. Journal of Computer Applications, 2021, 41(7): 2048-2053. |
[7] | WU Wei, LI Zeping, YANG Huawei, LIN Chuan, WANG Zhongde. Deep attention video popularity prediction model fusing content features and temporal information [J]. Journal of Computer Applications, 2021, 41(7): 1878-1884. |
[8] | FENG Xingjie, ZHANG Tianze. Panoptic segmentation algorithm based on grouped convolution for feature fusion [J]. Journal of Computer Applications, 2021, 41(7): 2054-2061. |
[9] | DONG Wentao, LI Zhuo, CHEN Xin. Online short video content distribution strategy based on federated learning [J]. Journal of Computer Applications, 2021, 41(6): 1551-1556. |
[10] | HU Die, FENG Ziliang. Light-weight road image semantic segmentation algorithm based on deep learning [J]. Journal of Computer Applications, 2021, 41(5): 1326-1331. |
[11] | CHE Bingqian, ZHOU Dong. Tag recommendation method combining network structure information and text content [J]. Journal of Computer Applications, 2021, 41(4): 976-983. |
[12] | SHE Yulong, ZHANG Xiaolong, CHENG Ruoqin, DENG Chunhua. Semantic segmentation method based on edge attention model [J]. Journal of Computer Applications, 2021, 41(2): 343-349. |
[13] | WU Rui, LIU Yu, FENG Kai. Pedestrian attribute recognition based on two-domain self-attention mechanism [J]. Journal of Computer Applications, 2021, 41(2): 372-378. |
[14] | GAO Shiwei, ZHANG Changzhu, WANG Zhuping. Lightweight real-time semantic segmentation algorithm based on separable pyramid [J]. Journal of Computer Applications, 2021, 41(10): 2937-2944. |
[15] | LU Rongxiu, CHEN Mingming, YANG Hui, ZHU Jianyong. Element component content dynamic monitoring system based on time sequence characteristics of solution images [J]. Journal of Computer Applications, 2021, 41(10): 3075-3081. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||