1 |
DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186.
|
2 |
FAN Y, XIE X, CAI Y, et al. Pre-training methods in information retrieval[J]. Foundations and Trends in Information Retrieval, 2022, 16(3): 178-317.
|
3 |
KHATTAB O, ZAHARIA M. ColBERT: efficient and effective passage search via contextualized late interaction over BERT [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 39-48.
|
4 |
SANTHANAM K, KHATTAB O, SAAD-FALCON J, et al. ColBERTv2: effective and efficient retrieval via lightweight late interaction[C]// Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 3715-3734.
|
5 |
ROBERTSON S, ZARAGOZA H. The probabilistic relevance framework: BM25 and beyond[J]. Foundations and Trends in Information Retrieval, 2009, 3(4): 333-389.
|
6 |
ROBERTSON S. Understanding inverse document frequency: on theoretical arguments for IDF[J]. Journal of Documentation, 2004,60(5): 503-520.
|
7 |
KARPUKHIN V, OGUZ B, MIN S,et al. Dense passage retrieval for open-domain question answering[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020:6769-6781.
|
8 |
CHEN H, LIU X, YIN D, et al. A survey on dialogue systems: recent advances and new frontiers [J]. ACM SIGKDD Explorations Newsletter, 2017, 19(2): 25-35.
|
9 |
HUANG P-S, HE X, GAO J, et al. Learning deep structured semantic models for web search using clickthrough data[C]// Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York: ACM, 2013: 2333-2338.
|
10 |
GUO J, FAN Y, AI Q, et al. A deep relevance matching model for ad-hoc retrieval[C]// Proceedings of the 25th ACM International Conference on Information & Knowledge Management. New York: ACM, 2016: 55-64.
|
11 |
GUO J, FAN Y, PANG L, et al. A deep look into neural ranking models for information retrieval[J]. Information Processing & Management, 2020, 57(6): 102067.
|
12 |
BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
|
13 |
YANG Z, DAI Z, YANG Y, et al. XLNet: generalized autoregressive pretraining for language understanding[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2019: 5753-5763.
|
14 |
RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[EB/OL]. [2023-05-01]. .
|
15 |
GUO J, CAI Y, FAN Y, et al. Semantic models for the first-stage retrieval: a comprehensive review[J]. ACM Transactions on Information Systems, 2022, 40(4): Article No.66.
|
16 |
ZHAO W X, LIU J, REN R, et al. Dense text retrieval based on pretrained language models: a survey[J]. ACM Transactions on Information Systems, 2024, 42(4): Article No.89.
|
17 |
ZHAN J, MAO J, LIU Y, et al. RepBERT: contextualized text embeddings for first-stage retrieal [EB/OL]. [2023-05-11]. .
|
18 |
GAO T, YAO X, CHEN D. SimCSE: simple contrastive learning of sentence embeddings [C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsberg: ACL, 2021: 6894-6910.
|
19 |
RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 5485-5551.
|
20 |
REIMERS N, GUREVYCH I. Sentence-BERT: sentence embeddings using siamese BERT-networks[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsberg: ACL, 2019: 3982-3992.
|