[1] STEENKEN D,VOß S,STAHLBOCK R. Container terminal operation and operations research-a classification and literature review[J]. OR Spectrum,2004,26(1):3-49. [2] CO C G,TANCHOCO J M A. A review of research on AGVS vehicle management[J]. Engineering Costs and Production Economics, 1991,21(1):35-42. [3] LE-ANH T,DE KOSTER M B M. A review of design and control of automated guided vehicle systems[J]. European Journal of Operational Research,2006,171(1):1-23. [4] FAZLOLLAHTABAR H,SAIDI-MEHRABAD M. Methodologies to optimize automated guided vehicle scheduling and routing problems:a review study[J]. Journal of Intelligent and Robotic Systems,2015,77(3/4):525-545. [5] LYU X,SONG Y,HE C,et al. Approach to integrated scheduling problems considering optimal number of automated guided vehicles and conflict-free routing in flexible manufacturing systems[J]. IEEE Access,2019,7:74909-74924. [6] FAZLOLLAHTABAR H,SAIDI-MEHRABAD M,MASEHIAN E. Mathematical model for deadlock resolution in multiple AGV scheduling and routing network:a case study[J]. Industrial Robot, 2015,42(3):252-263. [7] NISHI T,TANAKA Y. Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part A:Systems and Humans,2012,42(5):1230-1243. [8] MIYAMOTO T,INOUE K. Local and random searches for dispatch and conflict-free routing problem of capacitated AGV systems[J]. Computers and Industrial Engineering,2016,91:1-9. [9] MAŁOPOLSKI W. A sustainable and conflict-free operation of AGVs in a square topology[J]. Computers and Industrial Engineering,2018,126:472-481. [10] ANTAKLY D,LOISEAU J J,ABBOU R. A temporised conflictfree routing policy for AGVs[J]. IFAC-PapersOnLine,2017,50(1):11169-11174. [11] MOHAMMADI E K,SHIRAZI B. Toward high degree flexible routing in collision-free FMSs through automated guided vehicles' dynamic strategy:a simulation metamodel[J]. ISA Transactions, 2020,96:228-244. [12] FANTI M P,MANGINI A M,PEDRONCELLI G,et al. A decentralized control strategy for the coordination of AGV systems[J]. Control Engineering Practice,2018,70:86-97. [13] 郭兴海, 计明军, 张卫丹. 融合多目标与速度控制的AGV全局路径规划[J/OL]. 控制与决策.[2019-04-24]. http://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CAPJLAST&filename=KZYC2018122700O&v=. (GUO X H,JI M J,ZHANG W D. AGV global path planning integrating with the control of multi-objectives and speed[J/OL]. Control and Decision.[2019-04-24]. http://kns.cnki.net/kcms/detail/Detail.aspx?dbname=CAPJLAST&filename=KZYC2018122700O&v=.) [14] NISHI T,MATSUSHITA S,HISANO T,et al. A practical model of routing problems for automated guided vehicles with acceleration and deceleration[J]. Journal of Advanced Mechanical Design Systems and Manufacturing,2014,8(5):1-12. [15] 刘二辉, 姚锡凡, 蓝宏宇, 等. 基于改进遗传算法的自动导引小车动态路径规划及其实现[J]. 计算机集成制造系统,2018,24(6):1455-1467.(LIU E H,YAO X F,LAN H Y,et al. AGV dynamic path planning based on improved genetic algorithm and its implementation[J]. Computer Integrated Manufacturing Systems, 2018,24(6):1455-1467.) [16] 曹小华, 朱孟. 基于冲突预测的多AGV避碰决策优化方法[J/OL]. 计算机集成制造系统.(2019-08-12)[2019-10-15] http://kns.cnki.net/kcms/detail/11.5946.TP.20190812.0851.002.html. (CAO X H,(ZHU M. Research on Multi-AGV conflict avoidance decision optimization method based on conflict prediction[J/OL]. Computer Integrated Manufacturing Systems.(2019-08-12)[2019-10-15] http://kns.cnki.net/kcms/detail/11.5946.TP.20190812.0851.002.html.) [17] 李军军, 许波桅, 杨勇生, 等. 多自动导引车路径规划的诱导蚁群粒子群算法[J]. 计算机集成制造系统,2017,23(12):2758-2767.(LI J J,XU B W,YANG Y S,et al. Guided ant colony particle swarm optimization algorithm for path planning of AGVs[J]. Computer Integrated Manufacturing Systems,2017,23(12):2758-2767.) [18] 郑延斌, 王林林, 席鹏雪,等. 基于蚁群算法及博弈论的多Agent路径规划算法[J]. 计算机应用,2019,39(3):681-687. (ZHENG Y B,WANG L L,XI P X,et al. Multi-agent path planning algorithm based on ant colony algorithm and game theory[J]. Journal of Computer Applications,2019,39(3):681-687.) [19] XIN J,NEGENBORN R R,CORMAN F,et al. Control of interacting machines in automated container terminals using a sequential planning approach for collision avoidance[J]. Transportation Research,Part C:Emerging Technologies,2015,60:377-396. [20] YANG Y,ZHONG M,DESSOUKY Y,et al. An integrated scheduling method for AGV routing in automated container terminals[J]. Computers and Industrial Engineering,2018,126:482-493. [21] XIN J,NEGENBORN R R,LODEWIJKS G. Trajectory planning for AGVs in automated container terminals using avoidance constraints:a case study[J]. IFAC Proceedings Volumes,2014,47(3):9828-9833. [22] LI Q,POGROMSKY A,ADRIAANSEN T,et al. A control of collision and deadlock avoidance for automated guided vehicles with a fault-tolerance capability[J]. International Journal of Advanced Robotic Systems,2016,13:1-24. [23] KRISHNAMURTHY N N,BATTA R,KARWAN M H. Developing conflict-free routes for automated guided vehicles[J]. Operations Research,1993,41(6):1077-1090. [24] KIM K H,JEON S M,RYU K R. Deadlock prevention for automated guided vehicles in automated container terminals[J]. OR Spectrum,2006,28(4):659-679. |