[1] 孙逊莱,杜昌平,叶志贤,等. 一种扑翼飞行器气动参数的辨识方法[J]. 飞行力学, 2019, 37(6):17-21. (SUN X L, DU C P, YE Z X, et al. Identification of aerodynamic parameters for a flapping-wing micro aerial flight vehicle[J]. Flight Dynamics, 2019, 37(6):17-21.) [2] VERBOOM J L, TIJMONS S, DE WAGTER C, et al. Attitude and altitude estimation and control on board a flapping wing micro air vehicle[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2015:5846-5851. [3] TU Z, FEI F, YANG Y, et al. Realtime on-board attitude estimation of high-frequency flapping wing MAVs under large instantaneous oscillation[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2018:6806-6811. [4] 杨文青,宋笔锋,宋文萍,等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学, 2015, 29(3):1-10. (YANG W Q, SONG B F, SONG W P, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):1-10.) [5] HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones:a review[J]. Progress in Aerospace Sciences, 2017, 91:99-131. [6] 张小敏,罗秋凤. 基于神经网络观测器的飞控传感器在线故障诊断[J]. 计算机测量与控制, 2012, 20(7):1781-1783. (ZHANG X M, LUO Q F. Flight control system sensor online fault diagnosis based on neural network observer[J]. Computer Measurement and Control, 2012, 20(7):1781-1783.) [7] ZHANG M, WU J, WANG Y. Sensor soft fault detection method of autonomous underwater vehicle[C]//Proceedings of the 2009 International Conference on Mechatronics and Automation. Piscataway:IEEE, 2009:4839-4844. [8] 张闯,赵修斌,庞春雷,等. LS-SVM辅助的小幅值及缓变故障检测与容错方法[J]. 中国惯性技术学报, 2019, 27(3):415-420. (ZHANG C, ZHAO X B, PANG C L, et al. LS-SVM assisted fault detection and tolerance method for small-amplitude fault and gradual fault[J]. Journal of Chinese Inertial Technology, 2019, 27(3):415-420.) [9] JIANG S, LIAN M, LU C, et al. SVM-DS fusion based soft fault detection and diagnosis in solar water heaters[J]. Energy Exploration and Exploitation, 2019, 37(3):1125-1146. [10] 张垚,刘莹莹,周军. 基于小波变换的状态χ2改进检测算法及其应用[J]. 中国惯性技术学报, 2013, 21(1):136-140. (ZHANG Y, LIU Y Y, ZHOU J. Wavelet-transformation-based advanced state chi-square test method and its application[J]. Journal of Chinese Inertial Technology, 2013, 21(1):136-140.) [11] 舒畅,李辉. 基于小波与GBDT的无人机传感器故障诊断[J]. 测控技术, 2017, 36(8):41-46. (SHU C, LI H. Fault diagnosis of UAV sensors based on wavelet and GBDT[J]. Measurement and Control Technology, 2017, 36(8):41-46.) [12] CHEN Y, ZHANG C, ZHANG Q, et al. UAV fault detection based on GA-BP neural network[C]//Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation. Piscataway:IEEE, 2017:806-811. [13] 周福娜,高育林,王佳瑜,等. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5):30-37. (ZHOU F N, GAO Y L, WANG J Y, et al. Early diagnosis and life prognosis for slowlyvarying fault based on deep learning[J]. Journal of Shandong University (Engineering Science), 2017, 47(5):30-37.) [14] XU H, LIAN B. Fault detection for multi-source integrated navigation system using fully convolutional neural network[J]. IET Radar, Sonar and Navigation, 2018, 12(7):774-782. [15] 杨春,郭建,张磊,等. 采用卡方检验的模糊自适应无迹卡尔曼滤波组合导航算法[J]. 控制与决策, 2018, 33(1):81-87. (YANG C, GUO J, ZHANG L, et al. Fuzzy adaptive unscented Kalman filter integrated navigation algorithm using Chi-square test[J]. Control and Design, 2018, 33(1):81-87.) [16] 张华强,李东兴,张国强. 混合χ2检测法在组合导航系统故障检测中的应用[J]. 中国惯性技术学报, 2016, 24(5):696-700. (ZHANG H Q, LI D X, ZHANG G Q. Application of hybrid chi-square test method in fault detection if integrated navigation system[J]. Journal of Chinese Inertial Technology, 2016, 24(5):696-700.) |