Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (11): 3280-3288.DOI: 10.11772/j.issn.1001-9081.2020030314
Special Issue: 综述
• Virtual reality and multimedia computing • Previous Articles Next Articles
Received:
2020-03-19
Revised:
2020-06-23
Online:
2020-07-07
Published:
2020-11-10
Supported by:
通讯作者:
李翠锦(1984-),女,河南濮阳人,副教授,博士研究生,主要研究方向:数字图像处理、数字媒体;190424278@qq.com
作者简介:
瞿中(1972-),男,重庆人,教授,博士,CCF高级会员,主要研究方向:数字图像处理、数字媒体、云计算
基金资助:
CLC Number:
LI Cuijin, QU Zhong. Review of image edge detection algorithms based on deep learning[J]. Journal of Computer Applications, 2020, 40(11): 3280-3288.
李翠锦, 瞿中. 基于深度学习的图像边缘检测算法综述[J]. 《计算机应用》唯一官方网站, 2020, 40(11): 3280-3288.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020030314
[1] KITTLER J. On the accuracy of the Sobel edge detector[J]. Image and Vision Computing,1983,1(1):37-42. [2] TORRE V, POGGIO T A. On edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, PAMI-8(2):147-163. [3] CANNY J. Acomputational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, PAMI-8(6):679-698. [4] ARBELÁEZ P,MAIRE M,FOWLKES C,et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5):898-916. [5] REN X,BO L. Discriminatively trained sparse code gradients for contour detection[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:593-601. [6] DOLLÁR P,ZITNICK C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(8):1558-1570. [7] ZHENG L, SHEN L, TIAN L, et al. Scalable person reidentification:a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1116-1124. [8] XIE S,TU Z. Holistically-nested edge detection[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1395-1403. [9] BERTASIUS G,SHI J,TORRESANI L. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:318-330. [10] BERTASIUS G,SHI J,TORRESANI L. DeepEdge:a multiscale bifurcated deep network for top-down contour detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:4380-4389. [11] WANG Z,ZHU S,LI Y,et al. Convolutional neural network based deep conditional random fields for stereo matching[J]. Journal of Visual Communication and Image Representation, 2016,40(Pt B):739-750. [12] YU Z,FENG C,LIU M Y,et al. CASENet:deep category-aware semantic edge detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1761-1770. [13] CHADHA A, ANDREOPOULOS Y. Voronoi-basedcompact image descriptors:efficient region-of-interest retrieval with VLAD and deep-learning based descriptors[J]. IEEE Transactions on Multimedia,2017,19(7):1596-1608. [14] LIU Y,CHENG M,HU X,et al. Richer convolutional features for edge detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:5872-5881. [15] WANG X,MA H,CHEN X,et al. Edge preserving and multiscale contextual neural network for salient object detection[J]. IEEE Transactions on Image Processing,2018,27(1):121-134. [16] FU K,ZHAO Q,GU I Y H,et al. Refinet:a deep segmentation assisted refinement network for salient object detection[J]. IEEE Transactions on Multimedia,2019,21(2):457-469. [17] LUO J F,MA J W. Image segmentation with thecompetitive learning based MS model[C]//Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway:IEEE, 2015:182-186. [18] COMANICIU D,MEER P. Mean shift:a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619. [19] WANG Y,ZHAO X,HUANG K. Deep crisp boundaries:from boundaries to higher-level tasks[J]. IEEE Transactions on Image Processing,2019,28(3):1285-1298. [20] MARR D, HILDRETH E. Theory of edge detection[J]. Proceedings of the Royal Society B:Biological Sciences,1980, 207(1167):187-217. [21] HARRIS C,STEPHENS M. Acombined corner and edge detector[C]//Proceedings of the 1988 British Machine Vision Conference. Durham:BMVA Press,1988:147-152. [22] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [23] TRAJKOVIĆ M,HEDLEY M. Fast corner detection[J]. Image and Vision Computing,1998,16(2):75-87. [24] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision,2004,60(2):91-110. [25] REN X. Multi-scale improves boundary detection in natural images[C]//Proceedings of the 2008 European Conference on Computer Vision,LNCS 5304. Berlin:Springer,2008:533-545. [26] ZHANG Z, XING F, SHI X, et al. SemiContour:a semisupervised learning approach for contour detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:251-259. [27] DOLLÁR P,ZITNICK C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(8):1558-1570. [28] PATI Y C,REZAIIFAR R,KRISHNAPRASAD P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers. Piscataway:IEEE,1993:40-44. [29] AHARON M,ELAD M,BRUCKSTEIN A. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing,2006,54(11):4311-4322. [30] MAIRAL J,LEORDEANU M,BACH F,et al. Discriminative sparse image models for class-specific edge detection and image interpretation[C]//Proceedings of the 2008 European Conference on Computer Vision,LNCS 5304. Berlin:Springer,2008:43-56. [31] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//Proceedings of the 2012 European Conference on Computer Vision,LNCS 7576. Berlin:Springer,2012:746-760. [32] HALLMAN S,FOWLKES C C. Oriented edge forests for boundary detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1732-1740. [33] SHEN W,WANG X,WANG Y,et al. DeepContour:a deep convolutional feature learned by positive-sharing loss for contour detection[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:3982-3991. [34] IVAN G D. DermaKNet:Incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis[J]. IEEE Journal of Biomedical and Health Informatics, 2019,23(2):547-559. [35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-01-20]. https://arxiv.org/pdf/1409.1556.pdf. [36] LIU Y,LEW M S. Learning relaxed deep supervision for better edge detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:231-240. [37] BERTASIUS,SHI J,TORRESANI L. High-for-low and low-forhigh:efficient boundary detection from deep object features and its applications to high-level vision[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:504-512. [38] GANIN Y,LEMPITSKY V. N4-fields:neural network nearest neighbor fields for image transforms[C]//Proceedings of the 12th Asian Conference on Computer Vision, LNCS 9004. Cham:Springer,2015:536-551. [39] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2012:1097-1105. [40] MANINIS K K, PONT-TUSET J, ARBELÁEZ P, et al. Convolutional oriented boundaries[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer,2016:580-596. [41] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [42] XU D,OUYANG W,ALAMEDA-PINEDA X,et al. Learning deep structured multi-scale features using attention-gated CRFs for contour prediction[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:3961-3970. [43] FUKUSHIMA K. Neocognitron:a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J]. Biological Cybernetics,1980,36(4):193-202. [44] DENG R,SHEN C,LIU S,et al. Learning to predict crisp boundaries[C]//Proceedings of the 2018 European Conference on Computer Vision, LNCS 11210. Cham:Springer, 2018:570-586. [45] HE J,ZHANG S,YANG M,et al. Bi-directional cascade network for perceptual edge detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:3823-3832. [46] QU Z,WANG S,LIU L,et al. Visual cross-image fusion using deep neural networks for image edge detection[J]. IEEE Access, 2019,7:57604-57615. [47] YANG J,PRICE B,COHEN S,et al. Object contour detection with a fully convolutional encoder-decoder network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:193-202. [48] RUMELHART D E, HINTON G, WILLIAMS R. Learning internal representations by error propagation[M]//RUMELHART D E, MCCLELLAND J L, PDP Research Group. Parallel Distributed Processing:Explorations in the Microstructure of Cognition, Volume 1:Foundations. Cambridge:MIT Press, 1986:318-362. [49] LECUN Y,BOSER B,DENKER J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4):541-551. [50] BARRON J L,MALIK J. Intrinsic scene properties from a single RGB-D image[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2013:17-24. [51] DOLLÁR P,TU Z,BELONGIE S. Supervised learning of edges and object boundaries[C]//Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2006:1964-1971. [52] DOLLÁR P,ZITNICK C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(8):1558-1570. [53] CHU X, OUYANG W, LI H, et al. CRF-CNN:modeling structured information in human pose estimation[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2016:1-10. [54] XU D,RICCI E,OUYANG W,et al. Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:161-169. [55] MINKA T, WINN J. Gates[C]//Proceedings of the 22nd International Conference and Workshop on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc., 2008:1073-1080. [56] LONG J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:3431-3440. [57] NOH H,HONG S,HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:1520-1528. [58] PINHEIRO P O,LIN T Y,COLLOBERT R,et al. Learning to refine object segments[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:75-91. [59] SHI W,CABALLERO J,HUSZÁR F,et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1874-1883. [60] KHOREVA A, BENENSON R, OMRAN M, et al. Weakly supervised object boundaries[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:183-192. [61] XIE S,TU Z. Holistically-nested edge detection[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:1395-1403. [62] LI Y,PALURI M,REHG J M,et al. Unsupervised learning of edges[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1619-1627. [63] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [64] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [65] EVERINGHAM M,ESLAMI S M A,VAN GOOL L,et al. The pascal visual object classes challenge:a retrospective[J]. International Journal of Computer Vision,2015,111(1):98-136. [66] MOTTAGHI R,CHEN X,LIU X,et al. The role of context for object detection and semantic segmentation in the wild[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:891-898. [67] 苏松志, 李绍滋, 陈淑媛, 等. 行人检测技术综述[J]. 电子学报,2012,40(4):814-820.(SU S Z,LI S Z,CHEN S Y,et al. A survey on pedestrian detection[J]. Acta Electronica Sinica, 2012,40(4):814-820.) |
[1] | XIE Defeng, JI Jianmin. Syntax-enhanced semantic parsing with syntax-aware representation [J]. Journal of Computer Applications, 2021, 41(9): 2489-2495. |
[2] | DAI Yurou, YANG Qing, ZHANG Fengli, ZHOU Fan. Trajectory prediction model of social network users based on self-supervised learning [J]. Journal of Computer Applications, 2021, 41(9): 2545-2551. |
[3] | CHEN Chengrui, SUN Ning, HE Shibiao, LIAO Yong. Deep learning-based joint channel estimation and equalization algorithm for C-V2X communications [J]. Journal of Computer Applications, 2021, 41(9): 2687-2693. |
[4] | WANG Hebing, ZHANG Chunmei. Facial landmark detection based on ResNeXt with asymmetric convolution and squeeze excitation [J]. Journal of Computer Applications, 2021, 41(9): 2741-2747. |
[5] | ZHENG Zhiqiang, HU Xin, WENG Zhi, WANG Yuhe, CHENG Xi. Cattle eye image feature extraction method based on improved DenseNet [J]. Journal of Computer Applications, 2021, 41(9): 2780-2784. |
[6] | SONG Zhongshan, LIANG Jiarui, ZHENG Lu, LIU Zhenyu, TIE Jun. Remote sensing scene classification based on bidirectional gated scale feature fusion [J]. Journal of Computer Applications, 2021, 41(9): 2726-2735. |
[7] | LI Kangkang, ZHANG Jing. Multi-layer encoding and decoding model for image captioning based on attention mechanism [J]. Journal of Computer Applications, 2021, 41(9): 2504-2509. |
[8] | ZHANG Yongbin, CHANG Wenxin, SUN Lianshan, ZHANG Hang. Detection method of domains generated by dictionary-based domain generation algorithm [J]. Journal of Computer Applications, 2021, 41(9): 2609-2614. |
[9] | ZHAO Hong, KONG Dongyi. Chinese description of image content based on fusion of image feature attention and adaptive attention [J]. Journal of Computer Applications, 2021, 41(9): 2496-2503. |
[10] | XU Jianglang, LI Linyan, WAN Xinjun, HU Fuyuan. Indoor scene recognition method combined with object detection [J]. Journal of Computer Applications, 2021, 41(9): 2720-2725. |
[11] | CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation [J]. Journal of Computer Applications, 2021, 41(8): 2273-2287. |
[12] | QIN Binbin, PENG Liangkang, LU Xiangming, QIAN Jiangbo. Research progress on driver distracted driving detection [J]. Journal of Computer Applications, 2021, 41(8): 2330-2337. |
[13] | HUANG Chengcheng, DONG Xiaoxiao, LI Zhao. Deep pipeline 5×5 convolution method based on two-dimensional Winograd algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2258-2264. |
[14] | ZENG Xiangyin, ZHENG Bochuan, LIU Dan. Detection of left and right railway tracks based on deep convolutional neural network and clustering [J]. Journal of Computer Applications, 2021, 41(8): 2324-2329. |
[15] | HE Zhenghai, XIAN Yantuan, WANG Meng, YU Zhengtao. Case reading comprehension method combining syntactic guidance and character attention mechanism [J]. Journal of Computer Applications, 2021, 41(8): 2427-2431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||