[1] 张引, 陈敏, 廖小飞. 大数据应用的现状与展望[J]. 计算机研究与发展,2013,50(S2):216-233.(ZHANG Y,CHEN M,LIAO X F. Big data applications:a survey[J]. Journal of Computer Research and Development,2013,50(S2):216-233.) [2] 廖彬, 张陶, 于炯, 等. 多MapReduce作业协同下的大数据挖掘类算法资源效率优化[J]. 计算机应用研究,2020,37(5):1321-1325. (LIAO B,ZHANG T,YU J,et al. Resource efficiency optimization for big data mining algorithm with multi MapReduce collaboration scenario[J]. Application Research of Computers, 2020,37(5):1321-1325.) [3] 马小晋, 饶国宾, 许华虎. 云计算中任务调度研究的调查[J]. 计算机科学,2019,46(3):1-8.(MA X J,RAO G B,XU H H. Research on task scheduling in cloud computing[J]. Computer Science,2019,46(3):1-8.) [4] 方军, 张璋, 张雪峰, 等. 基于均衡适应度的云工作流调度算法[J]. 计算机应用与软件,2019,36(5):255-261.(FANG J, ZHANG Z, ZHANG X F, et al. Cloud workflow scheduling algorithm based on trade-off fitness[J]. Computer Applications and Software,2019,36(5):255-261.) [5] 徐超, 吴波, 姜丽丽, 等. 云-边缘系统中跨域大数据作业调度技术研究[J]. 计算机应用研究,2020,37(3):754-758.(XU C, WU B,JIANG L L,et al. Task scheduling for geo-distributed data analytics in cloud-edge system[J]. Application Research of Computers,2020,37(3):754-758.) [6] 肖俊明, 高洪洋, 朱永胜, 等. 考虑新能源接入的电力多目标优化调度[J]. 计算机工程与应用,2019,55(23):241-247.(XIAO J M,GAO H Y,ZHU Y S,et al. Multi-objective power dispatching considering new energy access[J]. Computer Engineering and Applications,2019,55(23):241-247.) [7] 李罡, 吴志军. 基于多QoS约束条件的广域信息管理系统任务调度算法[J]. 通信学报,2019,40(7):27-37.(LI G,WU Z J. Task scheduling algorithm for system-wide information management based on multiple QoS constraints[J]. Journal on Communications, 2019,40(7):27-37.) [8] 叶符明, 李雯婷, 王颖. MC2ETS:移动云计算中一种能效任务调度算法[J]. 计算机科学,2019,46(6):135-142.(YE F M,LI W T, WANG Y. MC2ETS:an energy-efficient tasks scheduling algorithm in mobile cloud computing[J]. Computer Science,2019, 46(6):135-142.) [9] 孟宪福, 张晓燕. 对等网络环境下基于相似度的任务调度策略研究[J]. 计算机集成制造系统,2007,13(12):2446-2451. (MENG X F,ZHANG X Y. Task scheduling strategy based on similarity in peer to peer network[J]. Computer Integrated Manufacturing Systems,2007,13(12):2446-2451.) [10] 李静梅, 孙冬微, 吴艳霞. 一种全局较优的静态任务调度算法[J]. 计算机应用研究,2014,31(4):1027-1030.(LI J M,SUN D W, WU Y X. Global comparatively optimum static task scheduling algorithm[J]. Application Research of Computers, 2014,31(4):1027-1030.) [11] 李学龙, 龚海刚. 大数据系统综述[J]. 中国科学:信息科学, 2015,45(1):1-44.(LI X L,GONG H G. A survey on big data systems[J]. SCIENTIA SINICA Informationis,2015,45(1):1-44.) [12] 李思源, 单青. 决策表技术的演变及其应用领域[J]. 系统工程,1996,14(6):10-14,5.(LI S Y,SHAN Q. Evolution of decision table technology and its application fields[J]. Systems Engineering,1996,14(6):10-14,5.) [13] 李旭, 荣梓景, 任艳. 带权决策表的属性约简[J]. 计算机工程与应,2020,56(12):54-59.(LI X,RONG Z J,REN Y. Attribute reduction on weighted decision table[J]. Computer Engineering and Applications,2020,56(12):54-59.) [14] 黄卫华. 基于信息论的属性约简算法[J]. 湖北民族学院学报(自然科学版),2018,36(3):289-292.(HUANG W H. Attribute reduction algorithm based on information theory[J]. Journal of Hubei University for Nationalities (Natural Science Edition),2018,36(3):289-292.) [15] ESMAEILBEIGI M,CHATRABGOUN O,HOSSEINIAN-FAR A, et al. A low cost and highly accurate technique for big data spatialtemporal interpolation[J]. Applied Numerical Mathematics, 2020,153:492-502. [16] LIU Y,ZHENG L,XIU Y,et al. Discernibility matrix based incremental feature selection on fused decision tables[J]. International Journal of Approximate Reasoning, 2020, 118:1-26. [17] SHU W, QIAN W, XIE Y, et al. An efficient uncertainty measure-based attribute reduction approach for interval-valued data with missing values[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2019, 27(6):931-947. [18] WEI W,SONG P,LIANG J,et al. Accelerating incremental attribute reduction algorithm by compacting a decision table[J]. International Journal of Machine Learning and Cybernetics,2019, 10(9):2355-2373. [19] MEI Y,NGUYEN S,XUE B,et al. An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming[J] IEEE Transactions on Emerging Topics in Computational Intelligence,2017,1(5):339-353. [20] 范会联, 仲元昌. 结合互信息的多目标属性约简[J]. 计算机应用研究,2012,29(2):490-492,529.(FAN H L,ZHONG Y C. Algorithm of attributes reduction based on multi-objective evolutionary and mutual information[J]. Application Research of Computers,2012,29(2):490-492,529.) [21] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science,1982,11(5):341-356. [22] 钱进, 苗夺谦, 张泽华, 等. MapReduce框架下并行知识约简算法模型研究[J]. 计算机科学与探索,2013,7(1):35-45. (QIAN J,MIAO D Q,ZHANG Z H,et al. Parallel algorithm model for knowledge reduction using MapReduce[J]. Journal of Frontiers of Computer Science and Technology,2013,7(1):35-45.) [23] 李玉琳, 高志刚, 韩延玲. 模糊综合评价中权值确定和合成算子选择[J]. 计算机工程与应用,2006,42(23):38-42,197.(LI Y L,GAO Z G,HAN Y L. The determination of weight value and the choice of composite operators in fuzzy comprehensive evaluation[J]. Computer Engineering and Applications,2006,42(23):38-42,197.) [24] 杜金环, 彭霞. 软件质量模糊综合评价模型与实例分析[J]. 信息技术, 2014(7):62-65. (DU J H, PENG X. Fuzzy comprehensive evaluation model and example analysis of software quality[J]. Information Technology,2014(7):62-65.) [25] 高晓林. 基于德尔菲法和模糊综合评价法的国际工程项目风险分析[J]. 项目管理技术,2018,16(8):85-92.(GAO X L. International engineering project risk analysis based on Delphi method and fuzzy comprehensive evaluation method[J]. Project Management Technology,2018,16(8):85-92.) [26] 周黎莎, 于新华. 基于网络层次分析法的电力客户满意度模糊综合评价[J]. 电网技术,2009,33(17):191-197.(ZHOU L S, YU X H. Fuzzy comprehensive evaluation of power customer satisfaction based on analytic network process[J]. Power System Technology,2009,33(17):191-197.) [27] 贾博婷, 赵天威, 祝志川. 基于熵值修正G2赋权的综合评价方法及实证[J]. 统计与决策,2019,35(8):30-35.(JIA B T, ZHAO T W,ZHU Z C. Comprehensive evaluation method and empirical analysis of G2 weighting based on entropy modification[J]. Statistics and Decision,2019,35(8):30-35.) [28] 刘维学. 系统评价指标体系与灰色模糊评价模型构建[J]. 计算机技术与发展,2013,23(10):193-196,200.(LIU W X. Construction of system evaluation index system and Grey fuzzy evaluation model[J]. Computer Technology and Development, 2013,23(10):193-196,200.) [29] 罗辛, 欧阳元新, 熊璋, 等. 通过相似度支持度优化基于K近邻的协同过滤算法[J]. 计算机学报,2010,33(8):1437-1445. (LUO X,OUYANG Y X,XIONG Z,et al. The effect of similarity support in k-nearest-neighborhood based collaborative filtering[J]. Chinese Journal of Computers,2010,33(8):1437-1445.) [30] SALAMON A. Oozie,workflow engine for Apache Hadoop[EB/OL].[2020-04-30]. http://oozie.apache.org/docs/5.2.0/index.html. [31] BLAKE C L,MERZ C J. UCI repository of machine learning databases[EB/OL].[2020-04-20]. http://mlearn.ics.uci.edu/MLRepository.html. [32] 赵欢, 江文, 李学辉. 异构系统中的综合性启发式任务调度算法[J]. 计算机应用,2010,30(5):1316-1320.(ZHAO H,JIANG W,LI X H. Synthesized heuristic task scheduling algorithm for heterogeneous system[J]. Journal of Computer Applications, 2010,30(5):1316-1320.) [33] 李静梅, 王雪, 吴艳霞. 一种改进的优先级列表任务调度算法[J]. 计算机科学,2014,41(5):20-23,36.(LI J M,WANG X, WU Y X. Improved priority list task scheduling algorithm[J]. Computer Science,2014,41(5):20-23,36.) [34] TOPCUOGLU H,HARIRI S,WU M. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems,2002,13(3):260-274. |