[1] 裴广达. 孔探与现代航空发动机维护[J]. 航空工程与维修, 2000(5):27-28. (PEI G D. Borescope inspection and modern aeroengine maintenance[J]. Aeronautical Engineering and Maintenance,2000(5):27-28.) [2] SHEN Z,WAN X,YE F,et al. Deep learning based framework for automatic damage detection in aircraft engine borescope inspection[C]//Proceedings of the 2019 International Conference on Computing,Networking and Communications. Piscataway:IEEE, 2019:1005-1010. [3] HOWARD A G. Some improvements on deep convolutional neuralnetwork based image classification[EB/OL].[2019-12-20]. https://arxiv.org/ftp/arxiv/papers/1312/1312.5402.pdf. [4] LIU W,ANGUELOV D,ERHAN D,et al. SSD:Single Shot MultiBox Detector[C]//Proceedings of the 2016 European Conference on Computer Vision,LNCS 9905. Cham:Springer, 2016:21-37. [5] IBRAHIM E R. Affine transformation[J]. Introduction to Geometric Computing,2016,94(3):473-481. [6] HARALICK R M. Using perspective transformations in scene analysis[J]. Computer Graphics and Image Processing,1980,13(3):191-221. [7] HUAND G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutionalnetworks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2261-2269. [8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neuralnetworks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook:Curran Associates Inc.,2012:1097-1105. [9] MORENO-BAREA F J,STRAZZERA F,JEREZ J M,et al. Forward noise adjustment scheme for data augmentation[C]//Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence. Piscataway:IEEE,2018:728-734. [10] SHORTEN C,KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data,2019, 6:Article No. 60. [11] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:Synthetic Minority Over-sampling TEchnique[J]. Journal of Artificial Intelligence Research,2002,16(1):321-357. [12] ZHANG H,CISSE M,DAUPHIN Y N,et al. Mixup:beyond empirical risk minimization[EB/OL].[2019-12-20]. https://arxiv.org/pdf/1710.09412.pdf. [13] BOWLES C, CHEN L, GUERRERO R, et al. GAN augmentation:augmenting training data using generative adversarialnetworks[EB/OL].[2019-12-20]. https://arxiv.org/pdf/1810.10863.pdf. [14] ZHU J,PARK T,ISOLA P,et al. Unpaired image-to-image translation using cycle-consistent adversarialnetworks[C]//Proceedings of the 2017 International Conference on Computer Vision. Piscataway:IEEE,2017:2242-2251. [15] 陈文兵, 管正雄, 陈允杰. 基于条件生成式对抗网络的数据增强方法[J]. 计算机应用, 2018, 38(11):3305-3311.(CHEN W B, GUAN Z X,CHEN Y J. Data augmentation method based on conditional generative adversarialnet model[J]. Journal of Computer Applications,2018,38(11):3305-3311.) [16] SHEN F,YAN S,ZENG G,et al. Metanetworks for neural style transfer[EB/OL].[2019-12-20]. https://arxiv.org/pdf/1709.04111.pdf. [17] PÉREZ P,GANGNET M,BLAKE A,et al. Poisson image editing[J]. ACM Transactions on Graphics,2003,22(3):313-318. [18] LAND E H,MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America,1971,61(1):1-11. |