Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 167-174.DOI: 10.11772/j.issn.1001-9081.2023010037
• Artificial intelligence • Previous Articles
Rui HUANG1, Chaoqun ZHANG1, Xuyi CHENG1, Yan XING1(), Bao ZHANG2
Received:
2023-01-15
Revised:
2023-04-13
Accepted:
2023-04-14
Online:
2023-06-06
Published:
2024-01-10
Contact:
Yan XING
About author:
HUANG Rui, born in 1987, Ph. D., lecturer. His research interests include computer vision, image processing, machine learning.Supported by:
通讯作者:
邢艳
作者简介:
黄睿(1987—),男,宁夏中卫人,讲师,博士,CCF会员,主要研究方向:计算机视觉、图像处理、机器学习;基金资助:
CLC Number:
Rui HUANG, Chaoqun ZHANG, Xuyi CHENG, Yan XING, Bao ZHANG. Incomplete instance guided aeroengine blade instance segmentation[J]. Journal of Computer Applications, 2024, 44(1): 167-174.
黄睿, 张超群, 成旭毅, 邢艳, 张宝. 不完整实例引导的航空发动机叶片实例分割[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 167-174.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010037
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
BMASK R-CNN[ | 0.393 | 0.695 | 0.381 |
YOLACT[ | 0.325 | 0.571 | 0.318 |
MASK R-CNN[ | 0.475 | 0.736 | 0.501 |
SparseInst[ | 0.579 | 0.809 | 0.618 |
本文方法 | 0.630 | 0.855 | 0.725 |
Tab. 1 Quantitative comparison of segmentation results of aeroengine blade among different instance segmentation methods
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
BMASK R-CNN[ | 0.393 | 0.695 | 0.381 |
YOLACT[ | 0.325 | 0.571 | 0.318 |
MASK R-CNN[ | 0.475 | 0.736 | 0.501 |
SparseInst[ | 0.579 | 0.809 | 0.618 |
本文方法 | 0.630 | 0.855 | 0.725 |
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
只使用背景点 | 0.098 | 0.112 | 0.100 |
只使用前景点 | 0.509 | 0.710 | 0.572 |
本文方法 | 0.630 | 0.855 | 0.725 |
Tab. 2 Effect of foreground and background points on instance segmentation result
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
只使用背景点 | 0.098 | 0.112 | 0.100 |
只使用前景点 | 0.509 | 0.710 | 0.572 |
本文方法 | 0.630 | 0.855 | 0.725 |
K | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
3 | 0.518 | 0.706 | 0.589 |
4 | 0.630 | 0.855 | 0.725 |
5 | 0.629 | 0.853 | 0.725 |
Tab. 3 Effect of number of foreground points on instance segmentation result
K | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
3 | 0.518 | 0.706 | 0.589 |
4 | 0.630 | 0.855 | 0.725 |
5 | 0.629 | 0.853 | 0.725 |
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
MASK R-CNN[ | 0.475 | 0.736 | 0.501 |
MASK R-CNN[ | 0.546 | 0.761 | 0.670 |
Tab. 4 Comparison of segmentation metrics for results of MASK R-CNN and MASK R-CNN +proposed method
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
MASK R-CNN[ | 0.475 | 0.736 | 0.501 |
MASK R-CNN[ | 0.546 | 0.761 | 0.670 |
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
BMASK R-CNN[ | 0.393 | 0.695 | 0.381 |
BMASK R-CNN[ | 0.424 | 0.732 | 0.415 |
Tab. 5 Comparison of segmentation metrics for results of BMASK R-CNN and BMASK R-CNN +proposed method
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
BMASK R-CNN[ | 0.393 | 0.695 | 0.381 |
BMASK R-CNN[ | 0.424 | 0.732 | 0.415 |
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
YOLACT[ | 0.325 | 0.571 | 0.318 |
YOLACT[ | 0.390 | 0.605 | 0.423 |
Tab. 6 Comparison of segmentation metrics for results of YOLACT and YOLACT +proposed method
方法 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|
YOLACT[ | 0.325 | 0.571 | 0.318 |
YOLACT[ | 0.390 | 0.605 | 0.423 |
T1 | T2 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|---|
0.6 | 0.7 | 0.630 | 0.855 | 0.725 |
0.7 | 0.8 | 0.618 | 0.858 | 0.693 |
0.8 | 0.6 | 0.624 | 0.855 | 0.705 |
0.9 | 0.6 | 0.624 | 0.855 | 0.705 |
0.6 | 0.9 | 0.573 | 0.856 | 0.598 |
Tab. 7 Influence of threshold T1 and T2 on instance segmentation results
T1 | T2 | mAP | AP(0.5) | AP(0.75) |
---|---|---|---|---|
0.6 | 0.7 | 0.630 | 0.855 | 0.725 |
0.7 | 0.8 | 0.618 | 0.858 | 0.693 |
0.8 | 0.6 | 0.624 | 0.855 | 0.705 |
0.9 | 0.6 | 0.624 | 0.855 | 0.705 |
0.6 | 0.9 | 0.573 | 0.856 | 0.598 |
1 | 张勇.孔探工作在发动机维护中的重要性[J].航空维修与工程, 2004(1): 24-25. 10.3969/j.issn.1672-0989.2004.01.010 |
ZHANG Y. The importance of borescope inspection in aircraft engine maintenance [J]. Aviation Maintenance & Engineering, 2004(1): 24-25. 10.3969/j.issn.1672-0989.2004.01.010 | |
2 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
3 | LIN T-Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context [C]// Proceedings of the 2014 European Conference on Computer Vision. Cham: Springer, 2014: 740-755. 10.1007/978-3-319-10602-1_48 |
4 | CHENG T, WANG X, HUANG L, et al. Boundary-preserving Mask R-CNN [C]// Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 660-676. 10.1007/978-3-030-58568-6_39 |
5 | CHEN K, PANG J, WANG J, et al. Hybrid task cascade for instance segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4969-4978. 10.1109/cvpr.2019.00511 |
6 | SOFIIUK K, PETROV I, BARINOVA O, et al. f-BRS: Rethinking backpropagating refinement for interactive segmentation [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8620-8629. 10.1109/cvpr42600.2020.00865 |
7 | CHENG T, WANG X, CHEN S, et al. Sparse instance activation for real-time instance segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4423-4432. 10.1109/cvpr52688.2022.00439 |
8 | 旷可嘉.深度学习及其在航空发动机缺陷检测中的应用研究[D].广州:华南理工大学, 2017. |
KUANG K J. Research on deep learning and its application on the defects detection for aero engine [D]. Guangzhou: South China University of Technology, 2017. | |
9 | KIM Y-H, LEE J-R. Videoscope-based inspection of turbofan engine blades using convolutional neural networks and image processing [J]. Structural Health Monitoring, 2019, 18(5/6): 2020-2039. 10.1177/1475921719830328 |
10 | 黄睿,段博坤,陈望,等.检测器和分类器级联的飞机发动机损伤检测[J].中国图象图形学报, 2022, 27(11): 3232-3242. 10.11834/jig.210734 |
HUANG R, DUAN B K, CHEN W, et al. Detector and classifier cascaded aero-engine detection method [J]. Journal of Image and Graphics, 2022, 27(11): 3232-3242. 10.11834/jig.210734 | |
11 | LI D, LI Y, XIE Q, et al. Tiny defect detection in high-resolution aero-engine blade images via a coarse-to-fine framework [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-12. 10.1109/tim.2021.3062175 |
12 | ZHANG D, ZENG N, LIN L. Detection of blades damages in aero engine [C]// Proceedings of the 2020 Chinese Automation Congress. Piscataway: IEEE, 2020: 6129-6134. 10.1109/cac51589.2020.9327202 |
13 | BOLYA D, ZHOU C, XIAO F, et al. YOLACT: Real-time instance segmentation [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9156-9165. 10.1109/iccv.2019.00925 |
14 | TIAN Z, SHEN C, CHEN H. Conditional convolutions for instance segmentation [C]// Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 282-298. 10.1007/978-3-030-58452-8_17 |
15 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 10.1109/cvpr.2018.00913 |
16 | LIN G, MILAN A, SHEN C, et al. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5168-5177. 10.1109/cvpr.2017.549 |
17 | WANG X, KONG T, SHEN C, et al. SOLO: Segmenting objects by locations [C]// Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer, 2020: 649-665. 10.1007/978-3-030-58523-5_38 |
18 | 樊玮,李晨炫,邢艳,等.航空发动机损伤图像的二分类到多分类递进式检测网络[J].计算机应用, 2021, 41(8): 2352-2357. 10.11772/j.issn.1001-9081.2020101575 |
FAN W, LI C X, XING Y, et al. Binary classification to multiple classification progressive detection network for aero-engine damage images [J]. Journal of Computer Applications, 2021, 41(8): 2352-2357. 10.11772/j.issn.1001-9081.2020101575 | |
19 | CHEN L-C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. 10.1109/tpami.2017.2699184 |
20 | 马佳良,陈斌,孙晓飞.基于改进的Faster R-CNN的通用目标检测框架[J].计算机应用, 2021, 41(9): 2712-2719. 10.11772/j.issn.1001-9081.2020111852 |
MA J L, CHEN B, SUN X F. General object detection framework based on improved Faster R-CNN [J]. Journal of Computer Applications, 2021, 41(9): 2712-2719. 10.11772/j.issn.1001-9081.2020111852 | |
21 | ROTHER C, KOLMOGOROV V, BLAKE A. “GrabCut” interactive foreground extraction using iterated graph cuts [J]. ACM Transactions on Graphics, 2004, 23(3): 309-314. 10.1145/1015706.1015720 |
22 | CHEN X, ZHAO Z, ZHANG Y, et al. FocalClick: Towards practical interactive image segmentation [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 1290-1299. 10.1109/cvpr52688.2022.00136 |
23 | SOFIIUK K, PETROV I A, KONUSHIN A. Reviving iterative training with mask guidance for interactive segmentation [C]// Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 3141-3145. 10.1109/icip46576.2022.9897365 |
24 | XU N, PRICE B, COHEN S, et al. Deep interactive object selection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 373-381. 10.1109/cvpr.2016.47 |
25 | 兰红,闵乐泉.多阈值优化交互式分割算法及其在医学图像中的应用[J].计算机应用, 2013, 33(5): 1435-1438, 1475. 10.3724/sp.j.1087.2013.01435 |
LAN H, MIN L Q. Interactive segmentation algorithm optimized by multi-threshold with application in medical images [J]. Journal of Computer Applications, 2013, 33(5): 1435-1438, 1475. 10.3724/sp.j.1087.2013.01435 | |
26 | CHEN X, ZHAO Z, YU F, et al. Conditional diffusion for interactive segmentation [C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7325-7334. 10.1109/iccv48922.2021.00725 |
27 | LIN Z, ZHANG Z, CHEN L-Z, et al. Interactive image segmentation with first click attention [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13336-13345. 10.1109/cvpr42600.2020.01335 |
28 | ACUNA D, LING H, KAR A, et al. Efficient interactive annotation of segmentation datasets with polygon-RNN++ [C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 859-868. 10.1109/cvpr.2018.00096 |
29 | SHAMOS M I. Computational geometry [D]. New Haven: Yale University, 1978. |
30 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696. 10.1109/cvpr.2019.00584 |
31 | GUPTA A, DOLLÁR P, GIRSHICK R. LVIS: A dataset for large vocabulary instance segmentation [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5351-5359. 10.1109/cvpr.2019.00550 |
[1] | Yuanlong ZHAO, Yugang SHAN, Jie YUAN, Kangdi ZHAO. Object tracking based on instance segmentation and Pythagorean fuzzy decision-making [J]. Journal of Computer Applications, 2023, 43(6): 1930-1937. |
[2] | Rong GAO, Jiawei SHEN, Xiongkai SHAO, Xinyun WU. Instance segmentation algorithm based on Fastformer and self-supervised contrastive learning [J]. Journal of Computer Applications, 2023, 43(4): 1062-1070. |
[3] | Tianzouzi XIAO, Xiaobo ZHOU, Xin LUO, Qipeng TANG. Robust RGB-D SLAM system incorporating instance segmentation and clustering in dynamic environment [J]. Journal of Computer Applications, 2023, 43(4): 1220-1225. |
[4] | MA Jialiang, CHEN Bin, SUN Xiaofei. General object detection framework based on improved Faster R-CNN [J]. Journal of Computer Applications, 2021, 41(9): 2712-2719. |
[5] | FAN Wei, LI Chenxuan, XING Yan, HUANG Rui, PENG Hongjian. Binary classification to multiple classification progressive detection network for aero-engine damage images [J]. Journal of Computer Applications, 2021, 41(8): 2352-2357. |
[6] | FENG Xingjie, ZHANG Tianze. Panoptic segmentation algorithm based on grouped convolution for feature fusion [J]. Journal of Computer Applications, 2021, 41(7): 2054-2061. |
[7] | Yue ZHANG, Liang ZHANG, Fei XIE, Jiale YANG, Rui ZHANG, Yijian LIU. Road abandoned object detection algorithm based on optimized instance segmentation model [J]. Journal of Computer Applications, 2021, 41(11): 3228-3233. |
[8] | TIAN Jin, YUAN Jiazheng, LIU Hongzhe. Instance segmentation based lane line detection and adaptive fitting algorithm [J]. Journal of Computer Applications, 2020, 40(7): 1932-1937. |
[9] | FENG Tao, CHEN Bin, ZHANG Yuefei. Chromosome image segmentation framework based on improved Mask R-CNN [J]. Journal of Computer Applications, 2020, 40(11): 3332-3339. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||