[1] CAO L,DIKMEN M,FU Y,et al. Gender recognition from body[C]//Proceedings of the 16th ACM International Conference on Multimedia. New York:ACM,2008:725-728. [2] JOO J,WANG S,ZHU S C. Human attribute recognition by rich appearance dictionary[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2013:721-728. [3] SUDOWE P,SPITZER H,LEIBE B. Person attribute recognition with a jointly-trained holistic CNN model[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops. Piscataway:IEEE,2015:329-337. [4] ABDULNABI A H,WANG G,LU J,et al. Multi-task CNN model for attribute prediction[J]. IEEE Transactions on Multimedia, 2015,17(11):1949-1959. [5] LI D,CHEN X,ZHANG Z,et al. Pose guided deep model for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway:IEEE,2018:1-6. [6] ZHAO X,SANG L,DING G,et al. Grouping attribute recognition for pedestrian with joint recurrent learning[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:3177-3183. [7] LI Q,ZHAO X,HE R,et al. Visual-semantic graph reasoning for pedestrian attribute recognition[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press, 2019:8634-8641. [8] WANG J,ZHU X,GONG S,et al. Attribute recognition by joint recurrent learning of context and correlation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:531-540. [9] ZHU F,LI H,OUYANG W,et al. Learning spatial regularization with image-level supervisions for multi-label image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:2027-2036. [10] LIU X,ZHAO H,TIAN M,et al. HydraPlus-Net:attentive deep features for pedestrian analysis[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:350-359. [11] LI Q,ZHAO X,HE R,et al. Pedestrian attribute recognition by joint visual-semantic reasoning and knowledge distillation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:833-839. [12] BUADES A,COLL B,MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2005:60-65. [13] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [14] ZHANG H, GOODFELLOW I, METAXAS D, et al. Selfattention generative adversarial networks[C]//Proceedings of the 36th International Conference on Machine Learning. New York:JMLR. org,2019:7354-7363. [15] VASWANI A,SHAZEER N,PARMAR N,et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:6000-6010. [16] ZHAO H,JIA J,KOLTUN V. Exploring self-attention for image recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:10073-10082. [17] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [18] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer, 2018:3-19. [19] CHEN T,DING S,XIE J,et al. ABD-Net:attentive but diverse person re-identification[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE, 2019:8350-8360. [20] TAN Z,YANG Y,WAN J,et al. Attention-based pedestrian attribute analysis[J]. IEEE Transactions on Image Processing, 2019,28(12):6126-6140. [21] HE K,ZHANG X,REN S,et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [22] DENG Y, LUO P, LOY C C, et al. Pedestrian attribute recognition at far distance[C]//Proceedings of the 22nd ACM International Conference on Multimedia. New York:ACM,2014:789-792. [23] LI D,ZHANG Z,CHEN X,et al. A richly annotated pedestrian dataset for person retrieval in real surveillance scenarios[J]. IEEE Transactions on Image Processing,2019,28(4):1575-1590. [24] DENG J,DONG W,SOCHER R,et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2009:248-255. [25] LI D, CHEN X, HUANG K. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Piscataway:IEEE,2015:111-115. [26] LIU P,LIU X,YAN J,et al. Localization guided learning for pedestrian attribute recognition[C]//Proceedings of the 2018 British Machine Vision Conference. Durham:BMVA Press, 2018:No. 0573. [27] 郑少飞, 汤进, 罗斌, 等. 基于改进损失函数的多阶段行人属性识别方法[J]. 模式识别与人工智能,2018,31(12):1085-1095. (ZHENG S F, TANG J, LUO B, et. al. Multistage pedestrian attribute recognition method based on improved loss function[J]. Pattern Recognition and Artificial Intelligence, 2018,31(12):1085-1095.) [28] ZHAO X,SANG L,DING G,et al. Recurrent attention model for pedestrian attribute recognition[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:9275-9282. [29] JI Z,HE E,WANG H,et al. Image-attribute reciprocally guided attention network for pedestrian attribute recognition[J]. Pattern Recognition Letters,2019,120:89-95. [30] SELVARAJU R R,COGSWELL M,DAS A,et al. Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017:618-626. |