Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2401-2406.DOI: 10.11772/j.issn.1001-9081.2021060950
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Nanjiang CHENG1,2, Zhenxia YU1(), Lin CHEN2, Hezhe QIAO2
Received:
2021-06-07
Revised:
2021-08-17
Accepted:
2021-09-02
Online:
2022-08-09
Published:
2022-08-10
Contact:
Zhenxia YU
About author:
CHENG Nanjiang, born in 1997, M. S. candidate. His research interests include machine learning, computer vision.Supported by:
通讯作者:
余贞侠
作者简介:
程南江(1997—),男,四川内江人,硕士研究生,主要研究方向:机器学习、计算机视觉;基金资助:
CLC Number:
Nanjiang CHENG, Zhenxia YU, Lin CHEN, Hezhe QIAO. Multi-source and multi-label pedestrian attribute recognition based on domain adaptation[J]. Journal of Computer Applications, 2022, 42(8): 2401-2406.
程南江, 余贞侠, 陈琳, 乔贺辙. 基于领域自适应的多源多标签行人属性识别[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2401-2406.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060950
方法 | mA | Acc | Prec | Rec | F1 |
---|---|---|---|---|---|
HPNet[ | 74.21 | 72.19 | 82.97 | 82.09 | 82.53 |
PGDM[ | 74.95 | 73.08 | 84.36 | 82.24 | 83.29 |
CoCNN[ | 80.56 | 78.30 | 89.49 | 84.36 | 86.85 |
ALM[ | 80.68 | 77.08 | 84.21 | 88.84 | 86.46 |
MT-CAS[ | 77.20 | 78.09 | 88.46 | 84.86 | 86.62 |
AR-BiFPN[ | 81.45 | 79.13 | 86.24 | 89.46 | 87.94 |
StrongBaseline[ | 80.50 | 78.84 | 87.24 | 87.12 | 86.78 |
PETA→PA-100K | 81.72 | 78.98 | 87.01 | 87.46 | 87.23 |
RAPv1→PA-100K | 82.12 | 79.38 | 86.67 | 88.04 | 87.35 |
RAPv2→PA-100K | 82.03 | 79.59 | 87.52 | 88.38 | 87.95 |
Tab. 1 Result comparison of different methods on PA-100K dataset
方法 | mA | Acc | Prec | Rec | F1 |
---|---|---|---|---|---|
HPNet[ | 74.21 | 72.19 | 82.97 | 82.09 | 82.53 |
PGDM[ | 74.95 | 73.08 | 84.36 | 82.24 | 83.29 |
CoCNN[ | 80.56 | 78.30 | 89.49 | 84.36 | 86.85 |
ALM[ | 80.68 | 77.08 | 84.21 | 88.84 | 86.46 |
MT-CAS[ | 77.20 | 78.09 | 88.46 | 84.86 | 86.62 |
AR-BiFPN[ | 81.45 | 79.13 | 86.24 | 89.46 | 87.94 |
StrongBaseline[ | 80.50 | 78.84 | 87.24 | 87.12 | 86.78 |
PETA→PA-100K | 81.72 | 78.98 | 87.01 | 87.46 | 87.23 |
RAPv1→PA-100K | 82.12 | 79.38 | 86.67 | 88.04 | 87.35 |
RAPv2→PA-100K | 82.03 | 79.59 | 87.52 | 88.38 | 87.95 |
方法 | RAPv1→PA-100K | RAPv2→PA-100K | PETA→PA-100K | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mA | Acc | Prec | Rec | F1 | mA | Acc | Prec | Rec | F1 | mA | Acc | Prec | Rec | F1 | |
ResNet-50 | 80.50 | 78.84 | 87.12 | 86.78 | 80.50 | 87.24 | 86.78 | 80.50 | 78.84 | 87.12 | 86.78 | ||||
ResNet-50+LAM | 87.30 | 78.36 | 87.68 | 87.05 | 79.05 | 87.30 | |||||||||
ResNet-50+LAM+FAM | 82.12 | 79.38 | 86.67 | 88.04 | 87.35 | 82.03 | 79.59 | 88.38 | 87.95 | 81.72 | 87.01 | 87.46 | 87.23 |
Tab. 2 Results of Ablation experiments
方法 | RAPv1→PA-100K | RAPv2→PA-100K | PETA→PA-100K | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mA | Acc | Prec | Rec | F1 | mA | Acc | Prec | Rec | F1 | mA | Acc | Prec | Rec | F1 | |
ResNet-50 | 80.50 | 78.84 | 87.12 | 86.78 | 80.50 | 87.24 | 86.78 | 80.50 | 78.84 | 87.12 | 86.78 | ||||
ResNet-50+LAM | 87.30 | 78.36 | 87.68 | 87.05 | 79.05 | 87.30 | |||||||||
ResNet-50+LAM+FAM | 82.12 | 79.38 | 86.67 | 88.04 | 87.35 | 82.03 | 79.59 | 88.38 | 87.95 | 81.72 | 87.01 | 87.46 | 87.23 |
属性 | 识别准确率/% | 提升百分点 | |
---|---|---|---|
StrongBaseline | RAPv1→PA-100K | ||
Hat | 66.16 | 76.84 | 10.68 |
Glasses | 81.23 | 87.07 | 5.84 |
ShortSleeve | 90.71 | 91.61 | 0.90 |
Trousers | 89.85 | 91.92 | 2.07 |
Skirt&Dress | 82.78 | 86.48 | 3.70 |
boots | 53.47 | 54.86 | 1.39 |
HandBag | 75.93 | 81.03 | 5.10 |
ShoulderBag | 76.43 | 76.07 | -0.36 |
Backpack | 79.75 | 82.62 | 2.87 |
Female | 90.61 | 92.37 | 1.76 |
Tab. 3 Comparison of common attribute recognition accuracy on RAPv1→PA-100K
属性 | 识别准确率/% | 提升百分点 | |
---|---|---|---|
StrongBaseline | RAPv1→PA-100K | ||
Hat | 66.16 | 76.84 | 10.68 |
Glasses | 81.23 | 87.07 | 5.84 |
ShortSleeve | 90.71 | 91.61 | 0.90 |
Trousers | 89.85 | 91.92 | 2.07 |
Skirt&Dress | 82.78 | 86.48 | 3.70 |
boots | 53.47 | 54.86 | 1.39 |
HandBag | 75.93 | 81.03 | 5.10 |
ShoulderBag | 76.43 | 76.07 | -0.36 |
Backpack | 79.75 | 82.62 | 2.87 |
Female | 90.61 | 92.37 | 1.76 |
属性 | 识别准确率/% | 提升百分点 | |
---|---|---|---|
StrongBaseline | RAPv2→PA-100K | ||
Hat | 66.16 | 74.63 | 8.47 |
Glasses | 81.23 | 87.48 | 6.25 |
ShortSleeve | 90.71 | 91.35 | 0.64 |
Trousers | 89.85 | 91.83 | 1.98 |
Skirt&Dress | 82.78 | 87.59 | 4.81 |
boots | 53.47 | 56.32 | 2.85 |
HandBag | 75.93 | 81.03 | 5.10 |
ShoulderBag | 76.43 | 76.08 | -0.35 |
Backpack | 79.75 | 78.59 | -1.16 |
Female | 90.61 | 92.48 | 1.87 |
Tab. 4 Comparison of common attribute recognition accuracy on RAPv2→PA-100K
属性 | 识别准确率/% | 提升百分点 | |
---|---|---|---|
StrongBaseline | RAPv2→PA-100K | ||
Hat | 66.16 | 74.63 | 8.47 |
Glasses | 81.23 | 87.48 | 6.25 |
ShortSleeve | 90.71 | 91.35 | 0.64 |
Trousers | 89.85 | 91.83 | 1.98 |
Skirt&Dress | 82.78 | 87.59 | 4.81 |
boots | 53.47 | 56.32 | 2.85 |
HandBag | 75.93 | 81.03 | 5.10 |
ShoulderBag | 76.43 | 76.08 | -0.35 |
Backpack | 79.75 | 78.59 | -1.16 |
Female | 90.61 | 92.48 | 1.87 |
属性 | 识别准确率/% | 提升百分点 | |
---|---|---|---|
StrongBaseline | PETA→PA-100K | ||
Hat | 66.16 | 73.47 | 7.31 |
Glasses | 81.23 | 85.39 | 4.16 |
ShortSleeve | 90.71 | 91.38 | 0.67 |
UpperLogo | 78.31 | 82.77 | 4.46 |
UpperPlaid | 77.3 | 80.17 | 2.87 |
Trousers | 89.85 | 91.31 | 1.46 |
Shorts | 90.83 | 91.42 | 0.59 |
Skirt&Dress | 82.78 | 85.43 | 2.65 |
Backpack | 79.75 | 80.14 | 0.39 |
Female | 90.61 | 91.22 | 0.61 |
AgeOver60 | 76.89 | 80.12 | 3.23 |
Tab. 5 Comparison of common attribute recognition accuracy on PETA→PA-100K
属性 | 识别准确率/% | 提升百分点 | |
---|---|---|---|
StrongBaseline | PETA→PA-100K | ||
Hat | 66.16 | 73.47 | 7.31 |
Glasses | 81.23 | 85.39 | 4.16 |
ShortSleeve | 90.71 | 91.38 | 0.67 |
UpperLogo | 78.31 | 82.77 | 4.46 |
UpperPlaid | 77.3 | 80.17 | 2.87 |
Trousers | 89.85 | 91.31 | 1.46 |
Shorts | 90.83 | 91.42 | 0.59 |
Skirt&Dress | 82.78 | 85.43 | 2.65 |
Backpack | 79.75 | 80.14 | 0.39 |
Female | 90.61 | 91.22 | 0.61 |
AgeOver60 | 76.89 | 80.12 | 3.23 |
1 | LAYNE R, HOSPEDALES T, GONG S G. Person re-identification by attributes [C]// Proceedings of the 2012 British Machine Vision Conference. Durham: BMVA Press, 2012: No.24. 10.5244/c.26.24 |
2 | WANG J Y, ZHU X T, GONG S G, et al. Transferable joint attribute-identity deep learning for unsupervised person re-identification [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2275-2284. 10.1109/cvpr.2018.00242 |
3 | KUMAR N, BERG A C, BELHUMEUR P N, et al. Attribute and simile classifiers for face verification [C]// Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 365-372. 10.1109/iccv.2009.5459250 |
4 | FERIS R, BOBBITT R, BROWN L, et al. Attribute-based people search: lessons learnt from a practical surveillance system [C]// Proceedings of the 4th ACM International Conference on Multimedia Retrieval. New York: ACM, 2014: 153-160. 10.1145/2578726.2578732 |
5 | LIN Y T, ZHENG L, ZHENG Z D, et al. Improving person re-identification by attribute and identity learning[J]. Pattern Recognition, 2019, 95: 151-161. 10.1016/j.patcog.2019.06.006 |
6 | 马路宽.行人属性识别研究[J].现代计算机, 2021(4): 89-93. 10.3969/j.issn.1007-1423.2021.04.018 |
MA L K. Research on pedestrian attribute recognition[J]. Modern Computer, 2021(4): 89-93. 10.3969/j.issn.1007-1423.2021.04.018 | |
7 | LI D W, CHEN X T, HUANG K Q. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios [C]// Proceedings of the 3rd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE, 2015: 111-115. 10.1109/acpr.2015.7486476 |
8 | SUDOWE P, SPITZER H, LEIBE B. Person attribute recognition with a jointly-trained holistic CNN model [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2015: 329-337. 10.1109/iccvw.2015.51 |
9 | ABDULNABI A H, WANG G, LU J W, et al. Multi-task CNN model for attribute prediction[J]. IEEE Transactions on Multimedia, 2015, 17(11): 1949-1959. 10.1109/tmm.2015.2477680 |
10 | LI D W, CHEN X T, ZHANG Z, et al. Pose guided deep model for pedestrian attribute recognition in surveillance scenarios [C]// Proceedings of the 2018 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2018: 1-6. 10.1109/icme.2018.8486604 |
11 | SARAFIANOS N, XU X, KAKADIARIS I A. Deep imbalanced attribute classification using visual attention aggregation [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11215. Cham: Springer, 2018: 708-725. |
12 | BOURDEV L, MAJI S, MALIK J. Describing people: a poselet-based approach to attribute classification [C]// Proceedings of the 2011 International Conference on Computer Vision. Piscataway: IEEE, 2011: 1543-1550. 10.1109/iccv.2011.6126413 |
13 | LIU X H, ZHAO H Y, TIAN M Q, et al. HydraPlus-Net: attentive deep features for pedestrian analysis [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 350-359. 10.1109/iccv.2017.46 |
14 | WU M D, HUANG D, GUO Y F, et al. Distraction-aware feature learning for human attribute recognition via coarse-to-fine attention mechanism [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 12394-12401. 10.1609/aaai.v34i07.6925 |
15 | YAGHOUBI E, BORZA D, NEVES J, et al. An attention-based deep learning model for multiple pedestrian attributes recognition[J]. Image and Vision Computing, 2020, 102: No.103981. 10.1016/j.imavis.2020.103981 |
16 | 吴锐,刘宇,冯凯.基于双域自注意力机制的行人属性识别[J].计算机应用, 2021, 41(2): 372-378. |
WU R, LIU Y, FENG K. Pedestrian attribute recognition based on two-domain self-attention mechanism[J]. Journal of Computer Applications, 2021, 41(2): 372-378. | |
17 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016, 770-778. 10.1109/cvpr.2016.90 |
18 | DENG Y B, LUO P, LOY C C, et al. Pedestrian attribute recognition at far distance [C]// Proceedings of the 22nd ACM International Conference on Multimedia. New York: ACM, 2014: 789-792. 10.1145/2647868.2654966 |
19 | LI D W, ZHANG Z, CHEN X T, et al. A richly annotated dataset for pedestrian attribute recognition[EB/OL]. (2016-04-27) [2021-08-15]. . 10.1109/tip.2018.2878349 |
20 | LI D W, ZHANG Z, CHEN X T, et al. A richly annotated pedestrian dataset for person retrieval in real surveillance scenarios[J]. IEEE Transactions on Image Processing, 2019, 28(4): 1575-1590. 10.1109/tip.2018.2878349 |
21 | 刘士豪,胡学敏,姜博厚,等.基于生成对抗双网络的虚拟到真实驾驶场景的视频翻译模型[J].计算机应用, 2020, 40(6): 1621-1626. |
LIU S H, HU X M, JIANG B H, et al. Video translation model from virtual to real driving scenes based on generative adversarial dual networks[J]. Journal of Computer Applications, 2020, 40(6): 1621-1626. | |
22 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. 10.1109/iccv.2017.244 |
23 | HAN K, WANG Y H, SHU H, et al. Attribute aware pooling for pedestrian attribute recognition [C]// Proceedings of the 28th Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 2456-2462. 10.24963/ijcai.2019/341 |
24 | TANG C F, SHENG L, ZHANG Z X, et al. Improving pedestrian attribute recognition with weakly-supervised multi-scale attribute-specific localization [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4996-5005. 10.1109/iccv.2019.00510 |
25 | ZENG H T, AI H Z, ZHUANG Z J, et al. Multi-task learning via co-attentive sharing for pedestrian attribute recognition [C]// Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2020: 1-6. 10.1109/icme46284.2020.9102757 |
26 | MOGHADDAM M, CHARMI M, HASSANPOOR H. Jointly human semantic parsing and attribute recognition with feature pyramid structure in EfficientNets[J]. IET Image Processing, 2021, 15(10): 2281-2291. |
27 | JIA J, HUANG H J, YANG W J, et al. Rethinking of pedestrian attribute recognition: realistic datasets with efficient method [EB/OL]. (2020-05-26) [2021-08-15]. . |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[3] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[6] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[7] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[8] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[9] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[10] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[11] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[12] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||