[1] LI J,TAI Z,ZHANG R,et al. Online bursty event detection from Microblog[C]//Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. Piscataway:IEEE,2014:865-870. [2] DIAO Q,JIANG J,ZHU F,et al. Finding bursty topics from microblogs[C]//Proceedings of the 201250th Annual Meeting of the Association for Computational Linguistics. Stroudsburg:ACL, 2012:536-544. [3] HUANG J,PENG M,WANG H,et al. A probabilistic method for emerging topic tracking in Microblog stream[J]. World Wide Web,2017,20(2):325-350. [4] WANG Y,ZHANG Z,SU S,et al. Topic-level bursty study for bursty topic detection in Microblogs[C]//Proceedings of the 2019 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 11439. Cham:Springer,2019:97-109. [5] FUNG G P C,YU J X,YU P S,et al. Parameter free bursty events detection in text streams[C]//Proceedings of the 200531st International Conference on Very Large Data Bases. New York:ACM,2005:181-192. [6] ZHU C,DU J,ZHANG Q,et al. Burst topic detection in real time spatial-temporal data stream[J]. IEEE Access,2019,7:82709-82720. [7] XIE W,ZHU F,JIANG J,et al. TopicSketch:real-time bursty topic detection from Twitter[J]. IEEE Transactions on Knowledge and Data Engineering,2016,28(8):2216-2229. [8] ZHANG T,ZHOU B,HUANG J,et al. A refined method for detecting interpretable and real-time bursty topic in microblog stream[C]//Proceedings of the 2017 International Conference on Web Information Systems Engineering, LNCS 10569. Cham:Springer,2017:3-17. [9] ZOU X, YANG J, ZHANG J. Sentiment-based and hashtag-based Chinese online bursty event detection[J]. Multimedia Tools and Applications,2018,77(16):21725-21750. [10] KLEINBERG J. Bursty and hierarchical structure in streams[J]. Data Mining and Knowledge Discovery,2003,7(4):373-397. [11] PALTOGLOU G. Sentiment-based event detection in Twitter[J]. Journal of the Association for Information Science and Technology, 2016,67(7):1576-1587. [12] 张鲁民, 贾焰, 周斌, 等. 一种基于情感符号的在线突发事件检测方法[J]. 计算机学报, 2013, 36(8):1659-1667.(ZHANG L M,JIA Y,ZHOU B,et al. Online bursty events detection based on emoticons[J]. Chinese Journal of Computers,2013,36(8):1659-1667.) [13] YIN J,WANG J. A Dirichlet multinomial mixture model-based approach for short text clustering[C]//Proceedings of the 201420th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:233-242. [14] HE D,PARKER D S. Topic dynamic:an alternative model of bursts in streams of topics[C]//Proceedings of the 201016th ACM International Conference on Knowledge Discovery and Discovery Data Mining. New York:ACM,2010:443-452. [15] 陈国兰. 基于突发词和情感分析的微博突发事件监测研究[D]. 南京:南京邮电大学, 2015:1-71.(CHEN G L. Monitoring based on micro-blog burst incidents word and sentiment analysis[D]. Nanjing:Nanjing University of Posts and Telecommunications,2015:1-71.) [16] 徐琳宏, 林鸿飞, 潘宇, 等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2):180-185.(XU L H,LIN H F,PAN Y,et al. Constructing the affective lexicon ontology[J]. Journal of the China Society for Scientific and Technical Information,2008,27(2):180-185.) [17] 方然, 苗夺谦, 张志飞. 一种基于情感的中文微博话题检测方法[J]. 智能系统学报, 2013, 8(3):208-213.(FANG R,MIAO D Q,ZHANG Z F. An emotion based topic detection method for Chinese microblog[J]. CAAI Transactions on Intelligent Systems,2013,8(3):208-213.) |