Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (4): 1056-1061.DOI: 10.11772/j.issn.1001-9081.2022030469
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Cheng FANG1(), Bei LI2, Ping HAN1, Qiong WU3
Received:
2022-04-13
Revised:
2022-09-27
Accepted:
2022-09-28
Online:
2023-04-11
Published:
2023-04-10
Contact:
Cheng FANG
About author:
LI Bei, born in 1993, M. S. candidate. Her research interests include natural language processing.Supported by:
通讯作者:
方澄
作者简介:
李贝(1993—),女,四川绵阳人,硕士研究生,主要研究方向:自然语言处理;基金资助:
CLC Number:
Cheng FANG, Bei LI, Ping HAN, Qiong WU. Fine-grained emotion classification of Chinese microblog based on syntactic dependency graph[J]. Journal of Computer Applications, 2023, 43(4): 1056-1061.
方澄, 李贝, 韩萍, 吴琼. 基于语法依存图的中文微博细粒度情感分类[J]. 《计算机应用》唯一官方网站, 2023, 43(4): 1056-1061.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022030469
情感 | 通用微博 | 疫情微博 |
---|---|---|
开心 | 清晨醒来,发现外面下着雨感觉好有诗意 | 感谢有你@#致敬疫情前线医护人员# |
伤心 | 跌跌撞撞磕磕碰碰这儿疼哪儿酸浑身是伤,崩溃想哭 | [泪][泪][泪]这几天看的新闻都感觉是一部电视剧 |
惊讶 | 关灯后,我竟然听到了蚊子的哼哼声,是我幻听了吗 | #新型肺炎最长潜伏期约14天#还有两天才出潜伏期[泪]?? |
害怕 | 事后还是有点心有余悸,安全第一吧! | 完全感觉不到明天就是除夕了全国都处在一种恐慌的状态里 |
生气 | 嘴巴挑的不得了,以后不给你吃了 | 歪日[衰] |
无情绪 | 言归正传,先来看看魔神王的背景 | 普通人能做的:尽量远离人群,外出戴口罩,向家里人科普宣传防护知识 |
Tab. 1 Data samples
情感 | 通用微博 | 疫情微博 |
---|---|---|
开心 | 清晨醒来,发现外面下着雨感觉好有诗意 | 感谢有你@#致敬疫情前线医护人员# |
伤心 | 跌跌撞撞磕磕碰碰这儿疼哪儿酸浑身是伤,崩溃想哭 | [泪][泪][泪]这几天看的新闻都感觉是一部电视剧 |
惊讶 | 关灯后,我竟然听到了蚊子的哼哼声,是我幻听了吗 | #新型肺炎最长潜伏期约14天#还有两天才出潜伏期[泪]?? |
害怕 | 事后还是有点心有余悸,安全第一吧! | 完全感觉不到明天就是除夕了全国都处在一种恐慌的状态里 |
生气 | 嘴巴挑的不得了,以后不给你吃了 | 歪日[衰] |
无情绪 | 言归正传,先来看看魔神王的背景 | 普通人能做的:尽量远离人群,外出戴口罩,向家里人科普宣传防护知识 |
数据集 | 训练集 | 数据增强 | 验证集 | 测试集 |
---|---|---|---|---|
通用微博 | 27 768 | 30 512 | 2 000 | 5 000 |
疫情微博 | 8 606 | 12 419 | 2 000 | 3 000 |
Tab. 2 Data scale
数据集 | 训练集 | 数据增强 | 验证集 | 测试集 |
---|---|---|---|---|
通用微博 | 27 768 | 30 512 | 2 000 | 5 000 |
疫情微博 | 8 606 | 12 419 | 2 000 | 3 000 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
迭代轮数(Epoch) | 64 | Dropout_rate | 0.5 |
优化器(Optimizer) | Adam | 权重初始化 | 随机初始化 |
初始学习率 (Learning_rate) | 0.001 | 隐藏层单元数 (Hidden_unit) | 200 |
Batch_size | 16 |
Tab. 3 Parameter setting of model
参数 | 值 | 参数 | 值 |
---|---|---|---|
迭代轮数(Epoch) | 64 | Dropout_rate | 0.5 |
优化器(Optimizer) | Adam | 权重初始化 | 随机初始化 |
初始学习率 (Learning_rate) | 0.001 | 隐藏层单元数 (Hidden_unit) | 200 |
Batch_size | 16 |
模型 | F1值 | Macro_Ffinal | |
---|---|---|---|
通用 | 疫情 | ||
Text-CNN[ | 63.21 | 60.11 | 61.66 |
DPCNN[ | 65.64 | 63.43 | 64.54 |
FastText[ | 64.45 | 60.80 | 62.63 |
LSTM[ | 65.53 | 67.70 | 66.62 |
BiLSTM[ | 66.25 | 70.14 | 68.20 |
Text-Level-GNN[ | 68.10 | 69.43 | 68.77 |
BGCN[ | 69.65 | 72.21 | 69.89 |
SGCN | 71.50 | 73.77 | 72.64 |
Tab. 4 Comparison of classification results of different models
模型 | F1值 | Macro_Ffinal | |
---|---|---|---|
通用 | 疫情 | ||
Text-CNN[ | 63.21 | 60.11 | 61.66 |
DPCNN[ | 65.64 | 63.43 | 64.54 |
FastText[ | 64.45 | 60.80 | 62.63 |
LSTM[ | 65.53 | 67.70 | 66.62 |
BiLSTM[ | 66.25 | 70.14 | 68.20 |
Text-Level-GNN[ | 68.10 | 69.43 | 68.77 |
BGCN[ | 69.65 | 72.21 | 69.89 |
SGCN | 71.50 | 73.77 | 72.64 |
模型 | F1值 | |
---|---|---|
通用 | 疫情 | |
图卷积 | 63.84 | 65.21 |
图卷积+词向量特征 | 69.00 | 70.86 |
图卷积+词向量+表情特征 | 70.59 | 72.24 |
图卷积+词向量+表情特征+PMI特征 | 71.50 | 73.77 |
Tab.5 Feature ablation experiment results
模型 | F1值 | |
---|---|---|
通用 | 疫情 | |
图卷积 | 63.84 | 65.21 |
图卷积+词向量特征 | 69.00 | 70.86 |
图卷积+词向量+表情特征 | 70.59 | 72.24 |
图卷积+词向量+表情特征+PMI特征 | 71.50 | 73.77 |
情绪 | Precision | Recall | F1值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
通用 | 疫情 | 通用 | 疫情 | 通用 | 疫情 | |||||||
融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | |
开心 | 66.97 | 72.23 | 86.28 | 86.57 | 66.11 | 67.19 | 86.56 | 88.77 | 66.53 | 69.62 | 86.42 | 87.66 |
伤心 | 54.76 | 57.74 | 37.37 | 56.34 | 55.56 | 61.33 | 50.68 | 54.79 | 55.16 | 59.48 | 43.02 | 55.56 |
惊讶 | 59.36 | 54.42 | 11.01 | 15.43 | 34.85 | 51.21 | 17.65 | 36.76 | 43.92 | 52.76 | 13.56 | 21.74 |
害怕 | 57.50 | 58.33 | 37.76 | 52.35 | 65.71 | 76.67 | 28.42 | 46.84 | 61.33 | 66.26 | 32.43 | 49.44 |
生气 | 71.16 | 77.29 | 61.92 | 69.82 | 79.79 | 76.67 | 63.93 | 68.47 | 75.23 | 76.98 | 62.91 | 69.14 |
无情绪 | 81.63 | 81.91 | 57.73 | 58.13 | 76.77 | 80.51 | 59.62 | 64.62 | 79.13 | 81.20 | 58.66 | 61.20 |
Tab. 6 Emotion classification results comparison of models before and after fusing emoticon features
情绪 | Precision | Recall | F1值 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
通用 | 疫情 | 通用 | 疫情 | 通用 | 疫情 | |||||||
融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | 融合前 | 融合后 | |
开心 | 66.97 | 72.23 | 86.28 | 86.57 | 66.11 | 67.19 | 86.56 | 88.77 | 66.53 | 69.62 | 86.42 | 87.66 |
伤心 | 54.76 | 57.74 | 37.37 | 56.34 | 55.56 | 61.33 | 50.68 | 54.79 | 55.16 | 59.48 | 43.02 | 55.56 |
惊讶 | 59.36 | 54.42 | 11.01 | 15.43 | 34.85 | 51.21 | 17.65 | 36.76 | 43.92 | 52.76 | 13.56 | 21.74 |
害怕 | 57.50 | 58.33 | 37.76 | 52.35 | 65.71 | 76.67 | 28.42 | 46.84 | 61.33 | 66.26 | 32.43 | 49.44 |
生气 | 71.16 | 77.29 | 61.92 | 69.82 | 79.79 | 76.67 | 63.93 | 68.47 | 75.23 | 76.98 | 62.91 | 69.14 |
无情绪 | 81.63 | 81.91 | 57.73 | 58.13 | 76.77 | 80.51 | 59.62 | 64.62 | 79.13 | 81.20 | 58.66 | 61.20 |
1 | SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]// Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2011: 151-161. |
2 | KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2014:1746-1751. 10.3115/v1/d14-1181 |
3 | TAI K S, SOCHER R, MANNING C D. Improved semantic local representations from tree-structured long short-term memory networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2015: 1556-1566. 10.3115/v1/p15-1150 |
4 | 万岩,杜振中. 融合情感词典和语义规则的微博评论细粒度情感分析[J]. 情报探索, 2020(11):34-41. 10.3969/j.issn.1005-8095.2020.11.005 |
WAN Y, DU Z Z. Fine-grained sentiment analysis of microblog comments based on fusion of sentiment lexicon and semantic rules[J]. Information Research, 2020(11):34-41. 10.3969/j.issn.1005-8095.2020.11.005 | |
5 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-02-20].. 10.48550/arXiv.1609.02907 |
6 | YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019:7370-7377. 10.1609/aaai.v33i01.33017370 |
7 | LAI Y N, ZHANG L F, HAN D H, et al. Fine-grained emotion classification of Chinese microblogs based on graph convolution networks[J]. World Wide Web, 2020, 23(5):2771-2787. 10.1007/s11280-020-00803-0 |
8 | 王光,李鸿宇,邱云飞,等. 基于图卷积记忆网络的方面级情感分类[J]. 中文信息学报, 2021, 35(8):98-106. 10.3969/j.issn.1003-0077.2021.08.013 |
WANG G, LI H Y, QIU Y F, et al. Aspect-based sentiment classification via memory graph convolutional network[J]. Journal of Chinese Information Processing, 2021, 35(8):98-106. 10.3969/j.issn.1003-0077.2021.08.013 | |
9 | 张军莲,张一帆,汪鸣泉,等. 基于图卷积神经网络的中文实体关系联合抽取[J]. 计算机工程, 2021, 47(12):103-111. |
ZHANG J L, ZHANG Y F, WANG M Q, et al. Joint extraction of Chinese entity relations based on graph convolutional neural network[J]. Computer Engineering, 2021, 47(12):103-111. | |
10 | ZHAO J, LIU K, XU L H. Book review: sentiment analysis: mining opinions, sentiments, and emotions[J]. Computational Linguistics, 2016, 42(3):595-598. 10.1162/coli_r_00259 |
11 | YANG Z L, DAI Z H, YANG Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[C/OL]// Proceedings of the 33rd Conference on Neural Information Processing Systems [2022-02-14].. |
12 | DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019:2978-2988. 10.18653/v1/p19-1285 |
13 | LI X W, NING H Y. Deep pyramid convolutional neural network integrated with self-attention mechanism and highway network for text classification[J]. Journal of Physics: Conference Series, 2020, 1642: No.012008. 10.1088/1742-6596/1642/1/012008 |
14 | JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2, Short Papers). Stroudsburg, PA: ACL, 2017:427-431. 10.18653/v1/e17-2068 |
15 | ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: ACL, 2016: 207-212. 10.18653/v1/p16-2034 |
16 | HUANG L Z, MA D H, LI S J, et al. Text level graph neural network for text classification[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2019:3444-3450. 10.18653/v1/d19-1345 |
17 | 方澄, 李贝, 韩萍. 基于全局特征图的半监督微博文本情感分类[J]. 信号处理, 2021, 37(6):1066-1074. 10.16798/j.issn.1003-0530.2021.06.018 |
FANG C, LI B, HAN P. Semi-supervised microblog text sentiment classification based on global feature graph[J]. Journal of Signal Processing, 2021, 37(6):1066-1074. 10.16798/j.issn.1003-0530.2021.06.018 |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[3] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[4] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[5] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[6] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[7] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[8] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[9] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[10] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[11] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[12] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[13] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[14] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[15] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||