[1] GU Y,SONG J,LIU W,et al. HLGPS:a home location global positioning system in location-based social networks[C]//Proceedings of the IEEE 16th International Conference on Data Mining. Piscataway:IEEE,2016:901-906. [2] EFSTATHIADES H, ANTONIADES D, PALLIS G, et al. Identification of key locations based on online social network activity[C]//Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. Piscataway:IEEE,2015:218-225. [3] KRUMM J. Inference attacks on location tracks[C]//Proceedings of the 2007 International Conference on Pervasive Computing,LNCS 4480. Berlin:Springer,2007:127-143. [4] WAN C,ZHU Y,YU J,et al. SMOPAT:mining semantic mobility patterns from trajectories of private vehicles[J]. Information Sciences,2018,429:12-25. [5] ISAACMAN S,BECKER R,CÁCERES R,et al. Identifying important places in people's lives from cellular network data[C]//Proceedings of the 2011 International Conference on Pervasive Computing,LNCS 6696. Berlin:Springer,2011:133-151. [6] ZHAO S,ZHAO Z,HUANG R,et al. Discovering individual life style from anonymized WiFi scan lists on smartphones[J]. IEEE Access,2019,7:22698-22709. [7] 龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报,2012,67(10):1339-1352.(LONG Y, ZHANG Y,CUI C Y. Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica,2012,67(10):1339-1352.) [8] TIAN Y, WINTER S, WANG J. Identifying residential and workplace locations from transit smart card data[J]. Journal of Transport and Land Use,2019,12(1):375-394. [9] SCHULZ A,HADJAKOS A,PAULHEIM H,et al. A multiindicator approach for geolocalization of tweets[C]//Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. Palo Alto,CA:AAAI Press,2013:573-582. [10] LI G,HU J,FENG J,et al. Effective location identification from microblogs[C]//Proceedings of the IEEE 30th International Conference on Data Engineering. Piscataway:IEEE, 2014:880-891. [11] 王凯, 余伟, 杨莎, 等. 一种大数据环境下的在线社交媒体位置推断方法[J]. 软件学报,2015,26(11):2951-2963.(WANG K,YU W,YANG S,et al. Location inference method in online social media with big data[J]. Journal of Software,2015,26(11):2951-2963.) [12] KONDO Y,HANGYO M,YOSHIDA M,et al. Home location estimation using weather observation data[C]//Proceedings of the 2017 International Conference on Advanced Informatics, Concepts,Theory,and Applications. Piscataway:IEEE,2017:1-6. [13] HU T,LUO J,KAUTZ H,et al. Home location inference from sparse and noisy data:models and applications[J]. Frontiers of Information Technology and Electronic Engineering,2016,17(5):389-402. [14] LIN J,CROMLEY R G. Inferring the home locations of Twitter users based on the spatiotemporal clustering of Twitter data[J]. Transactions in GIS,2018,22(1):82-97. [15] KAVAK H, VERNON-BIDO D, PADILLA J J. Fine-scale prediction of people's home location using social media footprints[C]//Proceedings of the 2018 International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation, LNCS 10899. Cham:Springer,2018:183-189. [16] GU Y,YAO Y,LIU W,et al. We know where you are:home location identification in location-based social networks[C]//Proceedings of the 25th International Conference on Computer Communication and Networks. Piscataway:IEEE,2016:1-9. [17] HUANG C,WANG D,ZHU S. Where are you from:home location profiling of crowd sensors from noisy and sparse crowdsourcing data[C]//Proceedings of the 2017 IEEE Conference on Computer Communications. Piscataway:IEEE,2017:1-9. [18] LI R,WANG S,DENG H,et al. Towards social user profiling:unified and discriminative influence model for inferring home locations[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:1023-1031. [19] HUANG C,WANG D,TAO J. An unsupervised approach to inferring the localness of people using incomplete geotemporal online check-in data[J]. ACM Transactions on Intelligent Systems and Technology,2017,8(6):No. 80. [20] YUAN Q,CONG G,MA Z,et al. Who,where,when and what:discover spatio-temporal topics for Twitter users[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2013:605-613. [21] WU F,LI Z,LEE W C,et al. Semantic annotation of mobility data using social media[C]//Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee, 2015:1253-1263. [22] CAO X,CONG G,JENSEN C S. Mining significant semantic locations from GPS data[J]. Proceedings of the VLDB Endowment,2010,3(1/2):1009-1020. [23] ZHENG Y,LI Q,CHEN Y,et al. Understanding mobility based on GPS data[C]//Proceedings of the 10th International Conference on Ubiquitous Computing. New York:ACM,2008:312-321. [24] ZHENG Y,ZHANG L,XIE X,et al. Mining interesting locations and travel sequences from GPS trajectories[C]//Proceedings of the 18th International Conference on World Wide Web. New York:ACM,2009:791-800. [25] XIAO X,ZHENG Y,LUO Q,et al. Finding similar users using category-based location history[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM,2010:442-445. [26] 何源浩, 魏海平, 周烨, 等. 车辆GPS轨迹兴趣区域提取算法研究[J]. 测绘工程,2016,25(5):47-51,55.(HE Y H,WEI H P,ZHOU Y,et al. Algorithm for extracting regions of interest from vehicle GPS trajectory[J]. Engineering of Surveying and Mapping,2016,25(5):47-51,55.) [27] ALHASOUN F,ALMAATOUQ A,GRECO K,et al. The city browser:utilizing massive call data to infer city mobility dynamics[C]//Proceedings of the 3rd International Workshop on Urban Computing. New York:UrbComp,2014:1-8. [28] DO T M T,GATICA-PEREZ D. The places of our lives:visiting patterns and automatic labeling from longitudinal smartphone data[J]. IEEE Transactions on Mobile Computing,2014,13(3):638-648. [29] MONTOLIU R,BLOM J,GATICA-PEREZ D. Discovering places of interest in everyday life from smartphone data[J]. Multimedia Tools and Applications,2013,62(1):179-207. [30] NASSIR N,KHANI A,LEE S G,et al. Transit stop-level origindestination estimation through use of transit schedule and automated data collection system[J]. Transportation Research Record,2011,2263(1):140-150. [31] MUNIZAGA M A, PALMA C. Estimation of a disaggregate multimodal public transport origin-destination matrix from passive smartcard data from Santiago,Chile[J]. Transportation Research Part C:Emerging Technologies,2012,24:9-18. [32] MA X,WU Y J,WANG Y,et al. Mining smart card data for transit riders' travel patterns[J]. Transportation Research Part C:Emerging Technologies,2013,36:1-12. [33] MA X,LIU C,WEN H,et al. Understanding commuting patterns using transit smart card data[J]. Journal of Transport Geography, 2017,58:135-145. [34] LI Z,WANG J,HAN J. Mining event periodicity from incomplete observations[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2012:444-452. [35] LI Z,WANG J,HAN J. ePeriodicity:mining event periodicity from incomplete observations[J]. IEEE Transactions on Knowledge and Data Engineering,2015,27(5):1219-1232. [36] HAKLAY M,WEBER P. OpenStreetMap:user-generated street maps[J]. IEEE Pervasive Computing,2008,7(4):12-18. [37] 国家统计局. 李希如:上半年我国就业形势稳中向好[EB/OL].[2019-07-17]. http://www.stats.gov.cn/tjsj/sjjd/201807/t20180717_1610395.html. (National Bureau of Statistics. LI Xiru:in the first half of the year,China's employment situation was stable and improved[EB/OL].[2019-07-17]. http://www.stats.gov.cn/tjsj/sjjd/201807/t20180717_1610395.html.) |