[1] 谢伟, 王莉明, 胡欢君, 等. 结合引导滤波的自适应多曝光图像融合[J]. 计算机工程与应用, 2019, 55(4):193-199.(XIE W, WANG L M,HU H J,et al. Adaptive multi-exposure image fusion combined with guided filtering[J]. Computer Engineering and Applications,2019,55(4):193-199.) [2] 杨艳春, 李娇, 党建武, 等. 基于冗余小波变换与引导滤波的多聚焦图像融合[J]. 计算机科学, 2018, 45(2):301-305.(YANG Y C,LI J,DANG J W,et al. Multi-focus image fusion based on redundant wavelet transform and guided filtering[J]. Computer Science,2018,45(2):301-305.) [3] 杨艳春, 李娇, 王阳萍. 图像融合质量评价方法研究综述[J]. 计算机科学与探索, 2018, 12(7):1021-1035.(YANG Y C,LI J, WANG Y P. Review of image fusion quality evaluation methods[J]. Journal of Frontiers of Computer Science and Technology, 2018,12(7):1021-1035.) [4] 曹义亲, 曹婷, 黄晓生. 基于NSST的CS与区域特性相结合的图像融合方法[J]. 计算机工程与应用, 2018, 54(20):190-196. (CAO Y Q,CAO T,HUANG X S. Image fusion method combined CS and regional characteristics based on NSST[J]. Computer Engineering and Applications,2018,54(20):190-196.) [5] ZHANG B,LU X,PEI H,et al. Multi-focus image fusion based on sparse decomposition and background detection[J]. Digital Signal Processing,2016,58:50-63. [6] BURT P J,ADELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications,1983,31(4):532-540. [7] 朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报, 2017, 46(12):213-221.(ZHU P,LIU Z Y,HUANG Z H. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12):213-221.) [8] 王健, 张修飞, 任萍, 等. 基于增补小波变换和PCNN的NSCT域图像融合算法[J]. 计算机工程与科学, 2018, 40(10):1822-1828.(WANG J,ZHANG X F,REN P,et al. An image fusion algorithm based on complementary wavelet transform and PCNN in NSCT domain[J]. Computer Engineering and Science,2018,40(10):1822-1828.) [9] NENCINI F,GARZELLI A,BARONTI S,et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007,8(2):143-156. [10] LEWIS J J,O' CALLAGHAN R J,NIKOLOV S G,et al. Pixeland region-based image fusion with complex wavelets[J]. Information Fusion,2007,8(2):119-130. [11] 刘哲, 徐涛, 宋余庆, 等. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5):1614-1620.(LIU Z,XU T,SONG Y Q,et al. Image fusion technology based on NSCT and robust principal component analysis model with similar information[J]. Journal of Jilin University(Engineering and Technology Edition),2018,48(5):1614-1620.) [12] ZHANG Q,GUO B. Multi-focus image fusion using the nonsubsampled contourlet transform[J]. Signal Processing,2009,89(7):1334-1346. [13] 谢秋莹, 易本顺, 柯祖福, 等. 基于SML和PCNN的NSCT域多聚焦图像融合[J]. 计算机科学, 2017, 44(6):266-269, 282.(XIE Q Y,YI B S,KE Z F,et al. Multi-focus image fusion based on SML and PCNN in NSCT domain[J]. Computer Science,2017, 44(6):266-269,282.) [14] YANG B,LI S. Multifocus image fusion and restoration with sparse representation[J]. IEEE Transactions on Instrumentation and Measurement,2010,59(4):884-892. [15] NEJATI M,SAMAVI S,SHIRANI S. Multi-focus image fusion using dictionary-based sparse representation[J]. Information Fusion,2015,25:72-84. [16] LI Q,YANG X,WU W,et al. Multi-focus image fusion method for vision sensor systems via dictionary learning with guided filter[J]. Sensors,2018,18(7):No. 2143. [17] LIU Y, CHEN X, WARD R K, et al. Image fusion with convolutional sparse representation[J]. IEEE Signal Processing Letters,2016,23(12):1882-1886. [18] LIU Y,CHEN Y,PENG H,et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion,2017, 36:191-207. [19] LI S,KANG X,HU J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing,2013,22(7):2864-2875. [20] ZHAN K,XIE Y,WANG H,et al. Fast filtering image fusion[J]. Journal of Electronic Imaging,2017,26(6):No. 063004. [21] XIA Z,WANG X,WANG C,et al. Sub pixel-based accurate and fast dynamic tumor image recognition[J]. Journal of Medical Imaging and Health Informatics,2018,8(5):925-931. [22] UNAR S,WANG X,ZHANG C. Visual and textual information fusion using kernel method for content based image retrieval[J]. Information Fusion,2018,44:176-187. [23] HE K,SUN J,TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2013, 35(6):1397-409. |