[1] ZHOU T,HAN G,XU X,et al. A learning-based multimodel integrated framework for dynamic traffic flow forecasting[J]. Neural Processing Letters,2019,49(1):407-430. [2] ZENG B,LI C. Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application[J]. Computers and Industrial Engineering,2018,118:278-290. [3] WILLIAMS B M, DURVASULA P K, BROWN D E. Urban freeway traffic flow prediction:application of seasonal autoregressive integrated moving average and exponential smoothing models[J]. Transportation Research Record,1998,1644(1):132-141. [4] XIE Y C,ZHANG Y,YE Z. Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition[J]. Computer-Aided Civil and Infrastructure Engineering,2007,22(5):326-334. [5] GUO J,HUANG W,WILLIAMS B M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C:Emerging Technologies,2014,43(Pt 1):50-64. [6] WANG Y,VAN SCHUPPEN J H,VRANCKEN J. Prediction of traffic flow at the boundary of a motorway network[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(1):214-227. [7] COMERT G,BEZUGLOV A. An online change-point-based model for traffic parameter prediction[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(3):1360-1369. [8] ZHANG X,PANG Y,CUI M,et al. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model[J]. Annals of Epidemiology,2015,25(2):101-106. [9] MIN W,WYNTER L. Real-time road traffic prediction with spatiotemporal correlations[J]. Transportation Research Part C:Emerging Technologies,2011,19(4):606-616. [10] MA T,ZHOU Z,ABDULHAI B. Nonlinear multivariate timespace threshold vector error correction model for short term traffic state prediction[J]. Transportation Research Part B:Methodological,2015,76:27-47. [11] TCHRAKIAN T T,BASU B,O'MAHONY M,et al. Real-time traffic flow forecasting using spectral analysis[J]. IEEE Transactions on Intelligent Transportation Systems,2012,13(2):519-526. [12] ZHANG Y,ZHANG Y,HAGHANI A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model[J]. Transportation Research Part C:Emerging Technologies,2014,43(Pt 1):65-78. [13] GHOSH B,BASU B,O'MAHONY M. Multivariate short-term traffic flow forecasting using time-series analysis[J]. IEEE Transactions on Intelligent Transportation Systems,2009,10(2):246-254. [14] HU X, XU X, XIAO Y, et al. SINet:a scale-insensitive convolutional neural network for fast vehicle detection[J]. IEEE Transactions on Intelligent Transportation Systems,2019,20(3):1010-1019. [15] CAI P,WANG Y,LU G,et al. A spatiotemporal correlative knearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C:Emerging Technologies, 2016,62:21-34. [16] ABU ARQUB O,ABO-HAMMOUR Z S. Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm[J]. Information Sciences,2014,279:396-415. [17] ABU ARQUB O,AL-SMADI M,MOMANI S,et al. Application of reproducing kernel algorithm for solving second-order,two-point fuzzy boundary value problems[J]. Soft Computing,2017,21(23):7191-7206. [18] CAI W,YU D,WU Z,et al. A hybrid ensemble learning framework for basketball outcomes prediction[J]. Physica A:Statistical Mechanics and its Applications, 2019, 528:No. 121461. [19] CHENG A,JIANG X,LI Y,et al. Multiple sources and multiple measures based traffic flow prediction using the chaos theory and support vector regression method[J]. Physica A:Statistical Mechanics and its Applications,2017,466:422-434. [20] XIAO J,WEI C,LIU Y. Speed estimation of traffic flow using multiple kernel support vector regression[J]. Physica A:Statistical Mechanics and its Applications,2018,509:989-997. [21] 刘明宇, 吴建平, 王钰博, 等. 基于深度学习的交通流量预测[J]. 系统仿真学报,2018,30(11):4100-4105,4114.(LIU M Y,WU J P,WANG Y B,et al. Traffic flow prediction based on deep learning[J]. Journal of System Simulation,2018,30(11):4100-4105,4114.) [22] 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息,2017,17(5):68-74.(LUO W H,DONG B T,WANG Z S. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology,2017,17(5):68-74.) [23] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical Physical and Engineering Sciences, 1998,454(1971):903-995. [24] NUNES J C,BOUAOUNE Y,DELECHELLE E,et al. Image analysis by bidimensional empirical mode decomposition[J]. Image and Vision Computing,2003,21(12):1019-1026. [25] 叶林, 刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报,2011,31(31):102-108.(YE L,LIU P. Combined model based on EMD-SVM for short-term wind power prediction[J]. Proceedings of the CSEE, 2011,31(31):102-108.) [26] LIU B,RIEMENSCHNEIDER S,XU Y. Gearbox fault diagnosis using empirical mode decomposition and Hilbert spectrum[J]. Mechanical Systems and Signal Processing, 2006, 20(3):718-734. [27] YILDIRIM S,JOTHIMANI D,KAVAKLIOĞLU C,et al. Deep learning approaches for sentiment analysis on financial microblog dataset[C]//Proceeding of the 2019 IEEE International Conference on Big Data. Piscataway:IEEE,2019:5581-5584. |