Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (1): 225-230.DOI: 10.11772/j.issn.1001-9081.2020060919

Special Issue: 第八届中国数据挖掘会议(CCDM 2020)

• China Conference on Data Mining 2020 (CCDM 2020) • Previous Articles     Next Articles

Short-term traffic flow prediction based on empirical mode decomposition and long short-term memory neural network

ZHANG Xiaohan1, FENG Aimin1,2   

  1. 1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210000, China;
    2. College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing Jiangsu 210000, China
  • Received:2020-05-30 Revised:2020-07-30 Online:2021-01-10 Published:2020-09-15

基于经验模态分解和长短期记忆神经网络的短期交通流量预测

张晓晗1, 冯爱民1,2   

  1. 1. 南京航空航天大学 计算机科学与技术学院, 南京 210000;
    2. 南京航空航天大学 人工智能学院, 南京 210000
  • 通讯作者: 冯爱民
  • 作者简介:张晓晗(1995-),女,安徽淮南人,硕士研究生,主要研究方向:机器学习、数据挖掘;冯爱民(1971-),女,江苏南京人,副教授,CCF会员,主要研究方向:机器学习、数据挖掘、异常检测、系统结构。

Abstract: Traffic flow prediction is an important part of intelligent transportation. The traffic data to be processed by it are non-linear, periodic, and random, as a result, the unstable traffic flow data depend on long-term data range during data prediction. At the same time, due to some external factors, the original data often contain some noise, which may further lead to the degradation of prediction performance. Aiming at the above problems, a prediction algorithm named EMD-LSTM that can denoise and process long-term dependence was proposed. Firstly, Empirical Mode Decomposition (EMD) was used to decompose different scale components in the traffic time series data gradually to generate a series of intrinsic mode functions with the same feature scale, thereby removing certain noise influence. Then, with the help of Long Short-Term Memory (LSTM) neural network, the problem of long-term dependence of data was solved, so that the algorithm performed more outstanding in long-term field prediction. Experimental results of short-term prediction of actual datasets show that EMD-LSTM has the Mean Absolute Error (MAE) 1.916 32 lower than LSTM, and the Mean Absolute Percentage Error (MAPE) 4.645 45 percentage points lower than LSTM. It can be seen that the proposed hybrid model significantly improves the prediction accuracy and can solve the problem of traffic data effectively.

Key words: traffic time series data, noise, Empirical Mode Decomposition (EMD), Long Short-Term Memory (LSTM) neural network, traffic flow control strategy

摘要: 交通流量预测作为智能交通的重要一环,所要处理的交通数据具有非线性、周期性和随机性的特点,导致在数据预测时,不稳定的交通流量数据依赖于长期数据范围,且由于一些外部因素使得原始数常包含一些噪声,可能导致预测性能的进一步下降。针对上述问题提出了一种能够去噪且能处理长时依赖的预测算法——EMD-LSTM。首先,通过经验模态分解(EMD)算法将交通时序数据中的不同尺度分量逐级分解出来,生成一系列具有相同特征尺度的本征模函数,从而去除一定的噪声影响;然后,借助长短期记忆(LSTM)神经网络解决数据的长期依赖问题,从而使所提算法在长时间视野预测方面表现更为突出。对实际数据集进行短期预测的实验结果表明,EMD-LSTM的平均绝对误差(MAE)比LSTM低了1.916 32,平均绝对百分误差(MAPE)比LSTM降低了4.645 45个百分点,可见所提出的混合模型使预测准确性得到显著提高,能够有效解决交通数据的问题。

关键词: 交通时序数据, 噪声, 经验模态分解, 长短期记忆神经网络, 交通流量控制策略

CLC Number: