[1] CARBONE P, KATSIFODIMOS A, EWEN S, et al. Apache FlinkTM:stream and batch processing in a single engine[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering,2015,36(4):28-38. [2] AKIDAU T,BRADSHAW R,CHAMBERS C,et al. The dataflow model:a practical approach to balancing correctness,latency,and cost in massive-scale,unbounded,out-of-order data processing[J]. Proceedings of the VLDB Endowment,2015,8(12):1792-1803. [3] CHANDRASEKARAN S,COOPER O,DESHPANDE A,et al. TelegraphCQ:continuous dataflow processing[C]//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York:ACM,2003:668. [4] XIN R S,GONZALEZ J E,FRANKLIN M J,et al. GraphX:a resilient distributed graph system on spark[C]//Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems. New York:ACM,2013:No. 2. [5] 郝春亮, 沈捷, 张珩, 等. 大数据背景下集群调度结构与研究进展[J]. 计算机研究与发展,2018,55(1):53-70.(HAO C L, SHEN J,ZHANG H,et al. Structures and state-of-art research of cluster scheduling in big data background[J]. Journal of Computer Research and Development,2018,55(1):53-70.) [6] MELNIK S,GUBAREV A,LONG J J,et al. Dremel:interactive analysis of web-scale datasets[J]. Communications of the ACM, 2011,54(6):114-123. [7] EAGER D L,LAZOWSKA E D,ZAHORJAN J. Adaptive load sharing in homogeneous distributed systems[J]. IEEE Transactions on Software Engineering,1986,SE-12(5):662-675. [8] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C]//Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Berkeley:USENIX Association,2012:15-28. [9] CHAMBERS C,RANIWALA A,PERRY F,et al. FlumeJava:easy,efficient data-parallel pipelines[J]. ACM SIGPLAN Notices, 2010,45(6):363-375. [10] ISARD M,BUDIU M,YU Y,et al. Dryad:distributed dataparallel programs from sequential building blocks[C]//Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems. New York:ACM, 2007:59-72. [11] HINDMAN B,KONWINSKI A,ZAHARIA M,et al. Mesos:a platform for fine-grained resource sharing in the data center[C]//Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation. Berkeley:USENIX Association, 2011:295-308. [12] VAVILAPALLI V K, MURTHY A C, DOUGLAS C, et al. Apache Hadoop YARN:yet another resource negotiator[C]//Proceedings of the 4th Annual Symposium on Cloud Computing. New York:ACM,2013:No. 5. [13] YOO A B,JETTE M A,GRONDONA M. SLURM:simple Linux utility for resource management[C]//Proceedings of the 2003 Workshop on Job Scheduling Strategies for Parallel Processing, LNCS 2862. Berlin:Springer,2003:44-60. [14] KARANASOS K,RAO S,CURINO C,et al. Mercury:hybrid centralized and distributed scheduling in large shared clusters[C]//Proceedings of 2015 USENIX Annual Technical Conference. Berkeley:USENIX Association,2015:485-497. [15] SCHWARZKOPF M,KONWINSKI A,ABD-EL-MALEK M,et al. Omega:flexible,scalable schedulers for large compute clusters[C]//Proceedings of the 8th ACM European Conference on Computer Systems. New York:ACM,2013:351-364. [16] OUSTERHOUT K,WENDELL P,ZAHARIA M,et al. Sparrow:distributed,low latency scheduling[C]//Proceedings of the 24th ACM Symposium on Operating Systems Principles. New York:ACM,2013:69-84. [17] ZAHARIA M,BORTHAKUR D,SEN SARMA J,et al. Delay scheduling:a simple technique for achieving locality and fairness in cluster scheduling[C]//Proceedings of the 5th European Conference on Computer Systems. New York:ACM, 2010:265-278. [18] ISARD M,PRABHAKARAN V,CURREY J,et al. Quincy:fair scheduling for distributed computing clusters[C]//Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. New York:ACM,2009:261-276. [19] GODER A,SPIRIDONOV A,WANG Y. Bistro:scheduling dataparallel jobs against live production systems[C]//Proceedings of the 2015 USENIX Conference on USENIX Annual Technical Conference. Berkeley:USENIX Association,2015:459-471. [20] BOUTIN E,EKANAYAKE J,LIN W,et al. Apollo:scalable and coordinated scheduling for cloud-scale computing[C]//Proceedings of the 11th USENIX Symposium on Operating Systems Design and Implementation. Berkeley:USENIX Association, 2014:285-300. [21] DELIMITROU C, SANCHEZ D, KOZYRAKIS C. Tarcil:reconciling scheduling speed and quality in large shared clusters[C]//Proceedings of the 6th ACM Symposium on Cloud Computing. New York:ACM,2015:97-110. [22] DELGADO P,DINU F,KERMARREC A M,et al. Hawk:hybrid datacenter scheduling[C]//Proceedings of the 2015 USENIX Annual Technical Conference. Berkeley,CA:USENIX Association,2015:499-510. [23] DELGADO P,DIDONA D,DINU F,et al. Job-aware scheduling in eagle:Divide and stick to your probes[C]//Proceedings of the 7th ACM Symposium on Cloud Computing. New York:ACM, 2016:497-509. [24] RASLEY J,KARANASOS K,KANDULA S,et al. Efficient queue management for cluster scheduling[C]//Proceedings of the 11th European Conference on Computer Systems. New York:ACM,2016:No. 36. [25] LITZKOW M J,LIVNY M,MUTKA M W. Condor-a hunter of idle workstations[C]//Proceedings of the 8th International Conference on Distributed Computing Systems. Piscataway:IEEE,1988:104-111. [26] WANG K,LIU N,SADOOGHI I,et al. Overcoming Hadoop scaling limitations through distributed task execution[C]//Proceedings of the 2015 IEEE International Conference on Cluster Computing. Piscataway:IEEE,2015:236-245. [27] 汤小春. 基于集群技术的作业管理系统的研究与实现[D]. 西安:西北工业大学,2001:127.(TANG X C. The research and implementation of job management system based on cluster technology[D]. Xi' an:Northwestern Polytechnical University, 2001:127.) [28] BRENT A. The Network Queueing System (NQS)[EB/OL].[2019-10-02]. http://gnqs.sourceforge.net/docs/papers/mnqs_papers/original_cosmic_nqs_paper.htm. [29] GHODSI A, ZAHARIA M, HINDMAN B, et al. Dominant resource fairness:fair allocation of multiple resource types[C]//Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation. Berkeley:USENIX Association, 2011:323-336. |