Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (2): 335-341.DOI: 10.11772/j.issn.1001-9081.2019081405
• DPCS 2019 • Previous Articles Next Articles
Received:
2019-07-31
Revised:
2019-09-03
Accepted:
2019-09-19
Online:
2020-02-26
Published:
2020-02-10
Contact:
Qingkui CHEN
About author:
LI Cui, born in 1994, M. S. candidate. Her research interests include network communication, parallel computing.
Supported by:
通讯作者:
陈庆奎
作者简介:
李翠(1994—),女,甘肃武威人,硕士研究生,主要研究方向:网络通信、并行计算
基金资助:
CLC Number:
Cui LI, Qingkui CHEN. Dynamic monitoring model based on DPDK parallel communication[J]. Journal of Computer Applications, 2020, 40(2): 335-341.
李翠, 陈庆奎. 基于DPDK并行通信的动态监控模型[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 335-341.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019081405
组件 | 监控的内容 |
---|---|
CPU | CPU的温度、核数目、核利用率、利用率、负载、进程数和线程数 |
内存 | 内存大小、内存利用率 |
网口 | 网口的数量、流量、丢包率、状态、负载和利用率 |
电源 | 工作电压、工作电流 |
I/O | I/O利用率 |
网络 | 网络流量、网络负载 |
管道 | 管道的数目、大小、状态和优先级 |
Tab. 1 Objects of monitoring
组件 | 监控的内容 |
---|---|
CPU | CPU的温度、核数目、核利用率、利用率、负载、进程数和线程数 |
内存 | 内存大小、内存利用率 |
网口 | 网口的数量、流量、丢包率、状态、负载和利用率 |
电源 | 工作电压、工作电流 |
I/O | I/O利用率 |
网络 | 网络流量、网络负载 |
管道 | 管道的数目、大小、状态和优先级 |
配置项 | 配置信息 |
---|---|
CPU | Intel Core i7-4790 CPU @3.60 GHz/ Intel Xeon CPU E3-1230 V2@3.30 GHz 8核 |
操作系统 | Centos7.0 |
内核版本 | Linux version 3.10.0-862.14.4.el7.x86_64 |
网卡 | 4端口,i350 |
内存 | 16 GB/24 GB/32 GB,DDR3 |
大页 | 4 GB/8 GB |
Tab. 2 Configuration information of server
配置项 | 配置信息 |
---|---|
CPU | Intel Core i7-4790 CPU @3.60 GHz/ Intel Xeon CPU E3-1230 V2@3.30 GHz 8核 |
操作系统 | Centos7.0 |
内核版本 | Linux version 3.10.0-862.14.4.el7.x86_64 |
网卡 | 4端口,i350 |
内存 | 16 GB/24 GB/32 GB,DDR3 |
大页 | 4 GB/8 GB |
监控对象 | 数据包大小/B | 核数目 | CPU利用率/% | CPU平均负载值 | 内存/GB | 内存占用率/% | ||
---|---|---|---|---|---|---|---|---|
1 min | 5 min | 15 min | ||||||
master | >1 024 | 8 | 100 | 8.51 | 8.22 | 6.78 | 16 | 59 |
node1 | 64 | 8 | 100 | 8.28 | 8.30 | 6.01 | 16 | 57 |
node2 | 64 | 8 | 100 | 8.92 | 8.24 | 6.85 | 24 | 42 |
node3 | 128 | 8 | 100 | 7.82 | 7.50 | 5.38 | 24 | 38 |
node4 | 128 | 8 | 100 | 7.87 | 7.57 | 5.66 | 16 | 56 |
node9 | 256 | 8 | 100 | 7.85 | 7.56 | 5.42 | 16 | 57 |
node5 | 512 | 8 | 100 | 8.21 | 7.92 | 6.78 | 16 | 56 |
node6 | 512 | 8 | 100 | 8.16 | 7.89 | 6.66 | 16 | 58 |
node7 | 1 024 | 8 | 100 | 7.98 | 7.78 | 5.86 | 16 | 57 |
node8 | 1 024 | 8 | 100 | 8.07 | 8.01 | 6.23 | 24 | 37 |
Tab. 3 Data of monitoring objects of system
监控对象 | 数据包大小/B | 核数目 | CPU利用率/% | CPU平均负载值 | 内存/GB | 内存占用率/% | ||
---|---|---|---|---|---|---|---|---|
1 min | 5 min | 15 min | ||||||
master | >1 024 | 8 | 100 | 8.51 | 8.22 | 6.78 | 16 | 59 |
node1 | 64 | 8 | 100 | 8.28 | 8.30 | 6.01 | 16 | 57 |
node2 | 64 | 8 | 100 | 8.92 | 8.24 | 6.85 | 24 | 42 |
node3 | 128 | 8 | 100 | 7.82 | 7.50 | 5.38 | 24 | 38 |
node4 | 128 | 8 | 100 | 7.87 | 7.57 | 5.66 | 16 | 56 |
node9 | 256 | 8 | 100 | 7.85 | 7.56 | 5.42 | 16 | 57 |
node5 | 512 | 8 | 100 | 8.21 | 7.92 | 6.78 | 16 | 56 |
node6 | 512 | 8 | 100 | 8.16 | 7.89 | 6.66 | 16 | 58 |
node7 | 1 024 | 8 | 100 | 7.98 | 7.78 | 5.86 | 16 | 57 |
node8 | 1 024 | 8 | 100 | 8.07 | 8.01 | 6.23 | 24 | 37 |
监控 对象 | 网口数量 | 网口 状态 | 网口数据流 速率/(MB·s-1) | 网口 利用率/% |
---|---|---|---|---|
master | 8 | 1,1,1,1, 1,1,1,1 | 114,123,124,108, 117,124,103,120 | 91,98, 99, 86, 93, 99, 82, 96 |
node1 | 8 | 1,0,1,1, 1,1,1,1 | 90, 0, 77, 90 , 84,91,71,85 | 72 ,0, 62, 72, 67,72, 56, 68 |
node2 | 4 | 1,1,1,0 | 91,103,83,0 | 72, 82, 66, 0 |
node3 | 8 | 1,1,1,1, 1,1,1,1 | 108, 100, 107,108, 118, 103, 100, 96 | 86, 80, 86, 86, 94, 82, 80, 77 |
node4 | 4 | 1,1,1,1 | 106, 113 ,99, 107 | 85, 90, 79, 86 |
node9 | 4 | 1,1,1,1 | 120, 101, 113 ,116 | 96, 81, 90, 93 |
node5 | 4 | 1,1,1,1 | 101, 116, 108,121 | 81, 93, 86, 97 |
node6 | 8 | 1,1,0,1, 1,1,1,1 | 110, 121, 0,102, 118, 106 ,120,101 | 88, 97, 0, 82, 94, 85, 96, 81 |
node7 | 8 | 1,1,1,1, 1,1,1,1 | 105,120, 113 ,118, 124,114 ,117 ,122 | 84, 96, 90, 94, 99, 91, 94, 97 |
node8 | 4 | 1,1,1,1 | 111,119, 104 ,123 | 89, 95, 83, 98 |
Tab. 4 Data of monitoring objects of network port
监控 对象 | 网口数量 | 网口 状态 | 网口数据流 速率/(MB·s-1) | 网口 利用率/% |
---|---|---|---|---|
master | 8 | 1,1,1,1, 1,1,1,1 | 114,123,124,108, 117,124,103,120 | 91,98, 99, 86, 93, 99, 82, 96 |
node1 | 8 | 1,0,1,1, 1,1,1,1 | 90, 0, 77, 90 , 84,91,71,85 | 72 ,0, 62, 72, 67,72, 56, 68 |
node2 | 4 | 1,1,1,0 | 91,103,83,0 | 72, 82, 66, 0 |
node3 | 8 | 1,1,1,1, 1,1,1,1 | 108, 100, 107,108, 118, 103, 100, 96 | 86, 80, 86, 86, 94, 82, 80, 77 |
node4 | 4 | 1,1,1,1 | 106, 113 ,99, 107 | 85, 90, 79, 86 |
node9 | 4 | 1,1,1,1 | 120, 101, 113 ,116 | 96, 81, 90, 93 |
node5 | 4 | 1,1,1,1 | 101, 116, 108,121 | 81, 93, 86, 97 |
node6 | 8 | 1,1,0,1, 1,1,1,1 | 110, 121, 0,102, 118, 106 ,120,101 | 88, 97, 0, 82, 94, 85, 96, 81 |
node7 | 8 | 1,1,1,1, 1,1,1,1 | 105,120, 113 ,118, 124,114 ,117 ,122 | 84, 96, 90, 94, 99, 91, 94, 97 |
node8 | 4 | 1,1,1,1 | 111,119, 104 ,123 | 89, 95, 83, 98 |
1 | BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the Internet of things[C]// Proceedings of the 1st Edition of the MCC Workshop on Mobile Cloud Computing. New York: ACM, 2012: 13-16. 10.1145/2342509.2342513 |
2 | NINAGAWA C, IWAHARA T, SUZUKI K. Enhancement of OpenADR communication for flexible fast ADR aggregation using TRAP mechanism of IEEE1888 protocol[C]// Proceedings of the 2015 IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2015: 2450-2454. 10.1109/ICIT.2015.7125458 |
3 | BELOGLAZOV A, ABAWAJY J, BUYYA R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012, 28(5):755-768. 10.1016/j.future.2011.04.017 |
4 | SHI W, CAO J, ZHANG Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646. 10.1109/jiot.2016.2579198 |
5 | HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing — a key technology towards 5G[J]. ETSI White Paper, 2015, 11(11): 1-16. |
6 | FD.io. How does fd.io relate to DPDK?[EB/OL]. [2019-05-16]. . 10.1038/sj.cdd.4400341 |
7 | Intel. Data plane development kit[EB/OL]. [2019-05-16]. . 10.1201/9780429353512-17 |
8 | DPDK Intel. Programmer’s guide [EB/OL]. [2019-05-12]. . |
9 | LUO T, WANG X, HU J, et al. Improving TLB performance by increasing hugepage ratio[C]// Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Piscataway: IEEE, 2015: 1139-1142. 10.1109/ccgrid.2015.36 |
10 | DPDK Intel. Project charter[EB/OL]. [2019-05-12]. . |
11 | CIUFFOLETTI A. Beyond Nagios-design of a cloud monitoring system[C]// Proceedings of the 6th International Conference on Cloud Computing and Services Science. Setúbal: SciTePress, 2016: 363-370. 10.5220/0005778303630370 |
12 | ANUSAS-AMORNKUL T, SANGRAT S. Linux server monitoring and self-healing system using Nagios[C]// Proceedings of the 14th International Conference on Mobile Web and Intelligent Information Systems, LNCS10486. Cham: Springer, 2017: 290-302. |
13 | KATSAROS G, KÜBERT R, GALLIZO G. Building a service-oriented monitoring framework with REST and Nagios[C]// Proceedings of the 2011 IEEE International Conference on Services Computing. Piscataway: IEEE, 2011: 426-431. 10.1109/scc.2011.53 |
14 | 郭晓慧,李润知,张茜,等.基于Zabbix的分布式服务器监控应用研究[J].通信学报,2013,34(Z2):94-98. |
GUO X H, LI R Z, ZHANG Q, et al. Application research on distributed Zabbix network monitoring system[J]. Journal on Communications, 2013, 34 (Z2): 94-98 | |
15 | 赵哲,谭海波,赵赫,等.基于Zabbix的网络监控系统[J]. 计算机技术与发展,2018,28(1):144-149. 10.3969/j.issn.1673-629X.2018.01.031 |
ZHAO Z, TAN H B, ZHAO H, et al. Network monitoring system based on Zabbix[J]. Computer Technology and Development, 2018, 28 (1): 144-149. 10.3969/j.issn.1673-629X.2018.01.031 | |
16 | CERRATO I, ANNARUMMA M, RISSO F. Supporting fine-grained network functions through Intel DPDK[C]// Proceedings of the 3rd European Workshop on Software Defined Networks. Piscataway: IEEE, 2014: 1-6. 10.1109/ewsdn.2014.33 |
17 | 令瑞林,李峻峰,李丹.基于多核平台的高速网络流量实时捕获方法[J].计算机研究与发展,2017, 54(6):1300-1313. 10.7544/issn1000-1239.2017.20160823 |
LING R L, LI J F, LI D. Realtime capture of high-speed traffic on multi-core platform[J]. Journal of Computer Research and Development, 2017, 54 (6): 1300-1313. 10.7544/issn1000-1239.2017.20160823 | |
18 | DURNER R, VARASTEH A, STEPHAN M, et al. HNLB: utilizing hardware matching capabilities of NICs for offloading stateful load balancers[C]// Proceedings of the 2019 IEEE International Conference on Communications. Piscataway: IEEE, 2019: 1-7. 10.1109/icc.2019.8761434 |
19 | Mircosoft. Receive Side Scaling (RSS)[EB/OL]. [2019-05-24]. . 10.1145/3359989.3365412 |
20 | WILES K. Pktgen-DPDK[EB/OL]. [2019-05-15]. . |
[1] | Ming ZHANG, Le FU, Haifeng WANG. Relay control model for concurrent data flow in edge computing [J]. Journal of Computer Applications, 2024, 44(12): 3876-3883. |
[2] | Jianli DING, Hui HUANG, Weidong CAO. Dynamic monitoring method of flight chain operation status [J]. Journal of Computer Applications, 2024, 44(12): 3941-3948. |
[3] | Yanan SUN, Jiehong WU, Junling SHI, Lijun GAO. Multi-UAV collaborative task assignment method based on improved self-organizing map [J]. Journal of Computer Applications, 2023, 43(5): 1551-1556. |
[4] | Li YANG, Jianting CHEN, Yang XIANG. Performance optimization strategy of distributed storage for industrial time series big data based on HBase [J]. Journal of Computer Applications, 2023, 43(3): 759-766. |
[5] | Yunbo LONG, Dan TANG. Load balancing method based on local repair code in distributed storage [J]. Journal of Computer Applications, 2023, 43(3): 767-775. |
[6] | ZHAO Quan, TANG Xiaochun, ZHU Ziyu, MAO Anqi, LI Zhanhuai. Low-latency cluster scheduling framework for large-scale short-time tasks [J]. Journal of Computer Applications, 2021, 41(8): 2396-2405. |
[7] | YANG Ling, JIANG Chunmao. Strategy of energy-aware virtual machine migration based on three-way decision [J]. Journal of Computer Applications, 2021, 41(4): 990-998. |
[8] | XU Hongliang, YANG Guiqin, JIANG Zhanjun. Data center adaptive multi-path load balancing algorithm based on software defined network [J]. Journal of Computer Applications, 2021, 41(4): 1160-1164. |
[9] | LI Zhuhong, ZHAO Canming, YAN Long, ZHANG Xinming. Load balancing opportunistic routing protocol for power line communication network in smart grids [J]. Journal of Computer Applications, 2019, 39(3): 812-816. |
[10] | WANG Zewu, SUN Lei, GUO Songhui, SUN Ruichen. Scheduling method of virtual cipher machine based on entropy weight evaluation in cryptography cloud [J]. Journal of Computer Applications, 2018, 38(5): 1353-1359. |
[11] | FU Chaojiang, WANG Tianqi, LIN Yuerong. Parallel algorithm for explicit finite element analysis based on efficient parallel computational strategy [J]. Journal of Computer Applications, 2018, 38(4): 1072-1077. |
[12] | LU Liang, YU Jiong, BIAN Chen, YING Changtian, SHI Kangli, PU Yonglin. Task scheduling algorithm based on weight in Storm [J]. Journal of Computer Applications, 2018, 38(3): 699-706. |
[13] | GENG Haijun, LIU Jieqi. Distributed load balancing algorithm based on hop-by-hop computing [J]. Journal of Computer Applications, 2018, 38(12): 3524-3528. |
[14] | TAI Yingying, PANG Ying, DUAN Keke, FU Yunpeng. Dynamic algorithm of load balancing based on D-S evidence theory with improved weight [J]. Journal of Computer Applications, 2018, 38(10): 2976-2981. |
[15] | ZHOU Yue, CHEN Qingkui. Load balancing mechanism for large-scale data access system [J]. Journal of Computer Applications, 2018, 38(1): 50-55. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||