[1] SMITH K. Beyond GSM-R:the future of railway radio[J]. International Railway Journal,2017,57(3):30-32,34. [2] 徐效宁, 李一楠, 李辉, 等. 融合轨道电路信息的CTCS-4级列控系统研究[J]. 铁道工程学报,2018,35(11):82-86.(XU X N, LI Y N,LI H,et al. Research on the CTCS-4 Train control system based on track circuit information fusion[J]. Journal of Railway Engineering Society,2018,35(11):82-86.) [3] 韩哲, 张霞, 李鸥, 等. 面向有损链路的传感网压缩感知数据收集算法[J]. 软件学报,2017,28(12):3257-3273.(HAN Z, ZHANG X, LI O, et al. Data gathering algorithm based on compressive sensing under lossy WSN[J]. Journal of Software, 2017,28(12):3257-3273.) [4] 罗瑜, 张珍珍. 一种方向插值预测变长编码的帧存有损压缩算法[J]. 电子与信息学报,2019,41(10):2495-2500.(LUO Y, ZHANG Z Z. A lossy frame memory compression algorithm using directional interpolation prediction variable length coding[J]. Journal of Electronics and Information Technology,2019,41(10):2495-2500.) [5] WEN L L,ZHOU K L,YANG S L,et al. Compression of smart meter big data:a survey[J]. Renewable and Sustainable Energy Reviews,2018,91:59-69. [6] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术[J]. 自动化学报,2018,44(7):1153-1164.(ZHOU D H,JI H Q,HE X. Fault diagnosis techniques for the information control system of high-speed trains[J]. Acta Automatica Sinica,2018,44(7):1153-1164.) [7] 程剑锋, 赵显琼, 刘磊. CTCS-4级列控系统关键技术研究[J]. 北京交通大学学报,2016,40(5):104-110.(CHENG J F,ZHAO X Q,LIU L. Research on key technologies of CTCS-4 level train control system[J]. Journal of Beijing Jiaotong University,2016,40(5):104-110.) [8] 李志文. 基于全球导航卫星系统(GNSS)的列车运行状态监控系统研究[J]. 铁路通信信号工程技术,2017,14(6):53-55.(LI Z W. Research on GNSS-based train operation status monitoring system[J]. Railway Signalling and Communication Engineering, 2017,14(6):53-55.) [9] 马新娜, 施文锐. 高速列车状态监测大数据的预警可视化分析研究[J]. 电子测量与仪器学报,2019,33(7):21-27.(MA X N, SHI W R. Research on visual analysis of condition monitoring big data for high speed train[J]. Journal of Electronic Measurement and Instrumentation,2019,33(7):21-27.) [10] 赵雅倩, 李龙, 郭跃超, 等. 基于OpenCL的Gzip数据压缩算法[J]. 计算机应用,2018,38(S1):112-115,130.(ZHAO Y Q, LI L,GUO Y C,et al. OpenCL-based optimization for Gzip algorithm[J]. Journal of Computer Applications,2018,38(S1):112-115,130.) [11] 杨仁忠, 张洁, 韦宏卫, 等. 基于GPU的Landsat8实时解压缩处理技术[J]. 计算机工程,2016,42(3):301-307.(YANG R Z, ZHANG J,WEI H W,et al. Real-time decompression processing technology of Landsat8 based on GPU[J]. Computer Engineering, 2016,42(3):301-307.) [12] FUNASAKA S,NAKANO K,ITO Y. Fully parallelized LZW decompression for CUDA-enabled GPUs[J]. IEICE Transactions on Information and Systems,2016,E 99. D(12):2986-2994. [13] 马志强, 李海生. 基于KD-tree剖分的三维动态场景快速有效压缩[J]. 计算机应用,2016,36(9):2590-2596.(MA Z Q,LI H S. Fast and effective compression for 3D dynamic scene based on KD-tree division[J]. Journal of Computer Applications,2016,36(9):2590-2596.) [14] LAI W K,CHEN Y U,WU T Y,et al. Towards a framework for large-scale multimedia data storage and processing on Hadoop platform[J]. The Journal of Supercomputing,2014,68(1):488-507. [15] 薛帅, 王光霞, 郭建忠, 等. 顾及最大绝对误差的频率域矢量数据压缩算法[J]. 武汉大学学报(信息科学版),2018,43(9):1438-1444.(XUE S,WANG G X,GUO J Z,et al. Vector map data compression of frequency domain with consideration of maximum absolute error[J]. Geomatics and Information Science of Wuhan University,2018,43(9):1438-1444.) [16] 韩立敏, 田泽, 张骏, 等. 图形处理器流水线数据压缩技术研究综述[J]. 计算机应用研究,2018,35(3):648-653.(HAN L M, TIAN Z,ZHANG J,et al. Survey of data compression techniques for GPU pipeline[J]. Application Research of Computers,2018, 35(3):648-653.) [17] THANOU D, CHOU P A, FROSSARD P. Graph-based compression of dynamic 3D point cloud sequences[J]. IEEE Transactions on Image Processing,2016,25(4):1765-1778. [18] DI S, CAPPELLO F. Fast error-bounded lossy HPC data compression with SZ[C]//Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium. Piscataway:IEEE,2016:730-739. [19] 李功丽, 戴紫彬, 徐进辉, 等. 基于流体系结构的VLIW二维压缩及并行解压[J]. 电子学报,2017,45(9):2256-2262.(LI G L,DAI Z B,XU J H,et al. 2-D compression and parallel decoding of VLIW based on stream architecture[J]. Acta Electronica Sinica,2017,45(9):2256-2262.) |