[1] 张炜,范年柏,汪文佳.基于自适应遗传算法的股票预测模型研究[J].计算机工程与应用,2015,51(4):254-259.(ZHANG W, FAN N B, WANG W J. Stock prediction model research based on improved adaptive genetic algorithm[J]. Computer Engineering and Applications, 2015, 51(4):254-259.) [2] 周治平,苗敏敏.改进的马氏距离动态时间规整手势认证方法[J].计算机应用,2015,35(5):1467-1470.(ZHOU Z P, MIAO M M. Dynamic time warping gesture authentication algorithm based on improved Mahalanobis distance[J]. Journal of Computer Applications, 2015, 35(5):1467-1470.) [3] 纪丽珍,李鹏,李林,等.冠心病患者心脏电-机械活动时间序列的熵分析[J].计算机工程与应用,2016,52(10):265-270.(JI L Z, LI P, LI L, et al. Analysis of cardiac electro-mechanical time-series in patients with coronary artery disease based on entropy[J]. Computer Engineering and Applications, 2016, 52(10):265-270.) [4] TEMME C, EBINGHAUS R, EINAX J W, et al. Time series analysis of long-term data sets of atmospheric mercury concentrations[J]. Analytical and Bioanalytical Chemistry, 2004, 380(3):493-501. [5] 苑卫国,刘云.微博用户特征量增长规律研究[J].计算机研究与发展,2015,52(2):522-532.(YUAN W G, LIU Y. Growth law of user characteristics in microblog[J]. Journal of Computer Research and Development, 2015, 52(2):522-532.) [6] 程习锋,万定生,王亚明.水文时间序列相似性查询优化算法[J].计算机工程与设计,2013,34(11):4046-4050.(CHENG X F, WAN D S, WANG Y M. Similarity search optimization algorithm in hydrological time series[J]. Computer Engineering and Design, 2013, 34(11):4046-4050.) [7] 唐毅,刘卫宁,孙棣华,等.改进时间序列模型在高速公路短时交通流量预测中的应用[J].计算机应用研究,2015,32(1):146-149.(TANG Y, LIU W N, SUN D H, et al. Application of improved time series model in forecasting of short-term traffic flow for freeway[J]. Application Research of Computers, 2015, 32(1):146-149.) [8] KEOGH E, KASETTY S. On the need for time series data mining benchmarks:a survey and empirical demonstration[J]. Data Mining and Knowledge Discovery, 2003, 7(4):349-371. [9] BERNDT D J, CLIFFORD J. Finding patterns in time series:a dynamic programming approach[M]//Advances in Knowledge Discovery and Data Mining. Menlo Park, CA:American Association for Artificial Intelligence, 1996:229-248. [10] 李正欣,张凤鸣,李克武,等.一种支持DTW距离的多元时间序列索引结构[J].软件学报,2014,25(3):560-575.(LI Z X, ZHANG F M, LI K W, et al. Index structure for multivariate time series under DTW distance metric[J]. Journal of Software, 2014, 25(3):560-575.) [11] TOYODA M, SAKURAI Y. Discovery of cross-similarity in data streams[C]//Proceedings of the 2010 IEEE 26th International Conference on Data Engineering. Piscataway, NJ:IEEE, 2010:101-104. [12] TOYODA M, SAKURAI Y, ISHIKAWA Y. Pattern discovery in data streams under the time warping distance[J]. The VLDB Journal, 2013, 22(3):295-318. [13] KEOGH E, RATANAMAHATANA C A. Exact indexing of dynamic time warping[J]. Knowledge and information systems, 2005, 7(3):358-386. [14] SAKOE H, CHIBA S. Dynamic programming algorithm optimization for spoken word recognition[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1978, 26(1):43-49. [15] ITAKURA F. Minimum prediction residual principle applied to speech recognition[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1975, 23(1):67-72. [16] SALVADOR S, CHAN P. Toward accurate dynamic time warping in linear time and space[J]. Intelligent Data Analysis, 2007, 11(5):561-580. [17] KIM M S, KIM S W, SHIN M. Optimization of subsequence matching under time warping in time-series databases[C]//SAC'05:Proceedings of the 2005 ACM Symposium on Applied Computing. New York:ACM, 2005:581-586. [18] HONG Y, SHUQIANG Y, SHAODONG M, et al. A novel parallel scheme for fast similarity search in large time series[J]. China Communications, 2015, 12(2):129-140. |