Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3368-3375.DOI: 10.11772/j.issn.1001-9081.2021010045
• Multimedia computing and computer simulation • Previous Articles Next Articles
Bo PENG1,2,3, Yaru LUO1, Shenghua XIE2,3(), Lixue YIN2,3
Received:
2021-01-12
Revised:
2021-03-08
Accepted:
2021-03-19
Online:
2021-03-29
Published:
2021-11-10
Contact:
Shenghua XIE
About author:
PENG Bo,born in 1980,Ph. D.,associate professor. His research
interests include medical ultrasound imaging,medical image and signal
analysisSupported by:
彭博1,2,3, 罗娅茹1, 谢盛华2,3(), 尹立雪2,3
通讯作者:
谢盛华
作者简介:
彭博(1980—),男,四川南充人,副教授,博士,CCF 会员,主要研究方向:医学超声成像、医学图像与信号分析基金资助:
CLC Number:
Bo PENG, Yaru LUO, Shenghua XIE, Lixue YIN. Universal vector flow mapping method combined with deep learning[J]. Journal of Computer Applications, 2021, 41(11): 3368-3375.
彭博, 罗娅茹, 谢盛华, 尹立雪. 联合深度学习的通用血流向量成像方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3368-3375.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010045
数据集 | 中心频率/MHz | 采样频率/MHz | 原始数据大小 | 数据对数 |
---|---|---|---|---|
4个小球仿体数据 | 5 | 40 | 416 | |
复杂乳腺结构数据 | 5 | 40 | 380 |
Tab. 1 Summary information of ultrasound simulation datasets
数据集 | 中心频率/MHz | 采样频率/MHz | 原始数据大小 | 数据对数 |
---|---|---|---|---|
4个小球仿体数据 | 5 | 40 | 416 | |
复杂乳腺结构数据 | 5 | 40 | 380 |
训练阶段 | 训练数据集 | 迭代次数 | 训练策略 | 损失函数 |
---|---|---|---|---|
第一阶段 | 4个小球仿体数据 | 1 200 000 | L2 loss+正则项 | |
第二阶段 | 复杂乳腺结构数据 | 600 000 | L1 loss+正则项 |
Tab. 2 Important training parameter information of PWC-Net model
训练阶段 | 训练数据集 | 迭代次数 | 训练策略 | 损失函数 |
---|---|---|---|---|
第一阶段 | 4个小球仿体数据 | 1 200 000 | L2 loss+正则项 | |
第二阶段 | 复杂乳腺结构数据 | 600 000 | L1 loss+正则项 |
度量标准 | 指标值 | 度量标准 | 指标值 |
---|---|---|---|
DICE | 0.918 9 | Precision | 0.909 8 |
VOE | 0.029 1 | Recall | 0.935 8 |
RVD | 0.039 0 |
Tab. 3 U-Net model evaluation results
度量标准 | 指标值 | 度量标准 | 指标值 |
---|---|---|---|
DICE | 0.918 9 | Precision | 0.909 8 |
VOE | 0.029 1 | Recall | 0.935 8 |
RVD | 0.039 0 |
1 | 尹立雪.心腔内血液流场及流体力学状态的可视化观察及量化评价[J].中华医学超声杂志(电子版),2009,6(3):427-431. 10.3969/j.issn.1672-6448.2009.03.002 |
YIN L X. Visualised observation and quantixed evaluation on heart flow field and hydrodynamic status [J]. Chinese Journal of Medical Ultrasound (Electronic Version), 2009, 6(3): 427-431. 10.3969/j.issn.1672-6448.2009.03.002 | |
2 | OHTSUKI S, TANAK M. The flow velocity distribution from the doppler information on a plane in three-dimensional flow [J]. Journal of Visualization, 2006, 9(1): 69-82. 10.1007/bf03181570 |
3 | UEJIMA T, KOIKE A, SAWADA H, et al. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation [J]. Ultrasound in Medicine and Biology, 2010, 36(5): 772-788. 10.1016/j.ultrasmedbio.2010.02.017 |
4 | GARCIA D, ÁLAMO J C DEL, TANNÉ D, et al. Two-dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images [J]. IEEE Transactions on Medical Imaging, 2010, 29(10): 1701-1713. 10.1109/tmi.2010.2049656 |
5 | ITATANI K, OKADA T, UEJIMA T, et al. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress [J]. Japanese Journal of Applied Physics, 2013, 52(7): 1044-1055. 10.7567/jjap.52.07hf16 |
6 | 谢盛华,尹立雪,甘建红,等.彩色多普勒图像心脏流场流线可视化方法[J].计算机辅助设计与图形学学报,2014,26(2):287-292. 10.3969/j.issn.1003-9775.2014.02.015 |
XIE S H, YIN L X, GAN J H, et al. Visualization method of plane streamlines in cardiac flow field based on color Doppler image information [J]. Journal of Computer-Aided Design and Computer Graphics, 2014, 26(2): 287-292. 10.3969/j.issn.1003-9775.2014.02.015 | |
7 | ASAMI R, TANAKA T, KAWABATA K I, et al. Accuracy and limitations of vector flow mapping: left ventricular phantom validation using stereo particle image velocimetory [J]. Journal of Echocardiography, 2017, 15(2): 57-66. 10.1007/s12574-016-0321-5 |
8 | TANAKA T, ASAMI R, KAWABATA K I, et al. A posteriori accuracy estimation of ultrasonic Vector-Flow Mapping (VFM) [J]. Journal of Visualization, 2017, 20(3): 607-623. 10.1007/s12650-016-0413-3 |
9 | ZHUANG Z M, LIU G B, DING W L, et al. Cardiac VFM visualization and analysis based on YOLO deep learning model and modified 2D continuity equation [J]. Computerized Medical Imaging and Graphics, 2020, 82: Article No.101732. 10.1016/j.compmedimag.2020.101732 |
10 | SUN D, YANG X, LIU M Y, et al. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IIEEE, 2018: 8934-8943. 10.1109/cvpr.2018.00931 |
11 | 尹立雪.现代超声心脏电生理学[M].北京:人民军医出版社,2007:167-178. |
YIN L X. Modern Ultrasonic in Cardiac Electrophysiology [M]. Beijing: People’s Military Medical Press, 2007: 167-178. | |
12 | KOBAYSHI I, MORI S, ARAKAWA M, et al. Spiral complex movements of the heart wall at the beginning of myocardial contraction detected by high frame speckle tracking [C]// Proceedings of the 2018 IEEE International Ultrasonics Symposium. Piscataway: IEEE, 2018: 1-4. 10.1109/ultsym.2018.8579988 |
13 | CALVO M, BONNET J L, LE ROLLE V, et al. Evaluation of three-dimensional accelerometers for the study of left ventricular contractility [C]// Proceedings of the 2018 Computing in Cardiology Conference. Piscataway: IEEE, 2018: 1-4. 10.22489/cinc.2018.176 |
14 | ZENG Q Y, WANG L, YANG Y L, et al. Comparison of multidirectional myocardial deformation result from pressure and volume overload in compensatory stage [J]. IEEE Access, 2018, 6: 76429-76436. 10.1109/access.2018.2882438 |
15 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS9351. Berlin: Springer, 2015: 234-241. |
16 | LECLERC S, SMISTAD E, PEDROSA J, et al. Deep learning for segmentation using an open large-scale dataset in 2D echocardiography [J]. IEEE Transactions on Medical Imaging, 2019, 38(9): 2198-2210. 10.1109/tmi.2019.2900516 |
17 | PENG B, XIAN Y H, ZHANG Q, et al. Neural-network-based motion tracking for breast ultrasound strain elastography: an initial assessment of performance and feasibility [J]. Ultrasonic Imaging, 2020, 42(2): 74-91. 10.1177/0161734620902527 |
18 | DOSOVITSKIY A, FISCHER P, ILG E, et al. FlowNet: learning optical flow with convolutional networks [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2758-2766. 10.1109/iccv.2015.316 |
19 | GROVER P. 5-regression-loss-functions-all-machine-learners-should-know: choosing the right loss function for fitting a model [EB/OL]. [2021-03-08]. . |
20 | 施仲伟.超声心动图在心血管疾病诊断中的应用[J].临床荟萃,2009,24(19):1671-1674. |
SHI Z W. Application of echocardiography in diagnosis of cardiovascular diseases [J]. Clinical Focus, 2009, 24(19): 1671-1674. | |
21 | LEDESMA-CARBAYO M J, KYBIC J, DESCO M, et al. Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation [J]. IEEE Transactions on Medical Imaging, 2005, 24(9): 1113-1126. 10.1109/tmi.2005.852050 |
[1] | LIU Li, HU Haibo, YANG Tao. Visual analysis system for exploring spatio-temporal exhibition data [J]. Journal of Computer Applications, 2020, 40(9): 2719-2727. |
[2] | ZHANG Daowei, DUAN Haixin. Website fingerprinting technique based on image texture [J]. Journal of Computer Applications, 2020, 40(6): 1685-1691. |
[3] | QIAO Jiewen, CHEN Wei. Adaptive color mapping and its application in void evolution visualization [J]. Journal of Computer Applications, 2020, 40(6): 1783-1792. |
[4] | WANG Bo, CAI Honghao, SU Yang. Classification of malicious code variants based on VGGNet [J]. Journal of Computer Applications, 2020, 40(1): 162-167. |
[5] | HE Huaiqing, ZHENG Liyuan, LIU Haohan, ZHANG Yumin. Visual analysis method for pilot eye movement data based on user-defined interest area [J]. Journal of Computer Applications, 2019, 39(9): 2683-2688. |
[6] | XIE Jing, ZOU Bin, LI Shenxin, ZHAO Xiuge, QIU Yonghong. Visual decision support platform for air pollution exposure risk prevention and control [J]. Journal of Computer Applications, 2019, 39(11): 3391-3397. |
[7] | JI Lianen, ZHANG Xiaolin, LIANG Shiyi, WANG Bin. Optimizing multi-slice real-time interactive visualization for out-of-core seismic volume [J]. Journal of Computer Applications, 2017, 37(9): 2621-2625. |
[8] | YANG Huanhuan, LI Tianrui, CHEN Xindi. Visualization of time series data based on spiral graph [J]. Journal of Computer Applications, 2017, 37(9): 2443-2448. |
[9] | CUI Di, GUO Xiaoyan, CHEN Wei. Challenges and recent progress in big data visualization [J]. Journal of Computer Applications, 2017, 37(7): 2044-2049. |
[10] | TAO Pan, FU Zhongliang, ZHU Kai, WANG Lili. Echocardiogram view recognition using deep convolutional neural network [J]. Journal of Computer Applications, 2017, 37(5): 1434-1438. |
[11] | XU Jie, FAN Yushun, BAI Bing. Knowledge mining and visualizing for scenic spots with probabilistic topic model [J]. Journal of Computer Applications, 2016, 36(8): 2103-2108. |
[12] | ZHANG Wenying, HE Kunjin, ZHANG Rongli, LIU Yuxing. 3-D visualization and information management system design based on open scene graph [J]. Journal of Computer Applications, 2016, 36(7): 2056-2060. |
[13] | WANG Xiangang, YAO Zhonghua, SONG Hanchen. MSNV:network structure visualization method based on multi-level community detection [J]. Journal of Computer Applications, 2016, 36(5): 1347-1351. |
[14] | JIANG Jianchun, CHEN Huiling, DENG Lu, ZHAO Jianpeng. Configuration tool design based on control-oriented multi-core real-time operating system [J]. Journal of Computer Applications, 2016, 36(3): 765-769. |
[15] | LI Zhenju, LI Xuejun, XIE Jianwei, LI Yannan. Massive terrain data storage based on HBase [J]. Journal of Computer Applications, 2015, 35(7): 1849-1853. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||