Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3368-3375.DOI: 10.11772/j.issn.1001-9081.2021010045

• Multimedia computing and computer simulation • Previous Articles     Next Articles

Universal vector flow mapping method combined with deep learning

Bo PENG1,2,3, Yaru LUO1, Shenghua XIE2,3(), Lixue YIN2,3   

  1. 1.School of Computer Science,Southwest Petroleum University,Chengdu Sichuan 610500,China
    2.Cardiovascular Ultrasound and Non-invasive Cardiology Department,Sichuan Academy of Medical Sciences·Sichuan Provincial People’s Hospital,Chengdu Sichuan 610072,China
    3.Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province,Chengdu Sichuan 610072,China
  • Received:2021-01-12 Revised:2021-03-08 Accepted:2021-03-19 Online:2021-03-29 Published:2021-11-10
  • Contact: Shenghua XIE
  • About author:PENG Bo,born in 1980,Ph. D.,associate professor. His research interests include medical ultrasound imaging,medical image and signal analysis
    LUO Yaru,born in 1995,M. S. candidate. Her research interests include medical image processing and analysis
    XIE Shenghua,born in 1978,Ph. D.,associate research fellow. His research interests include medical image processing,cardiovascular biomechanics
    YIN Lixue,born in 1964,M. S.,professor. His research interests include cardiovascular ultrasound.
  • Supported by:
    the Application Foundation Research Project of Science and Technology Department of Sichuan Province(2018JY0649);the International Cooperation Project of Chengdu Science and Technology Bureau, Sichuan Province(2019-GH02-00040-HZ)

联合深度学习的通用血流向量成像方法

彭博1,2,3, 罗娅茹1, 谢盛华2,3(), 尹立雪2,3   

  1. 1.西南石油大学 计算机科学学院,成都 610500
    2.四川省医学科学院·四川省人民医院 心血管超声及心功能科,成都 610072
    3.超声心脏电生理学与生物力学四川省重点实验室,成都 610072
  • 通讯作者: 谢盛华
  • 作者简介:彭博(1980—),男,四川南充人,副教授,博士,CCF 会员,主要研究方向:医学超声成像、医学图像与信号分析
    罗娅茹(1995—),女,四川绵阳人,硕士研究生,主要研究方向:医学图像处理与分析
    谢盛华(1978—),男,重庆人,副研究员,博士,主要研究 方向:医学图像处理、心血管生物力学
    尹立雪(1964—),男,四川眉山人,教授,硕士,主要研究方向:心血管超声。
  • 基金资助:
    四川省科技厅应用基础研究项目(2018JY0649);四川省成都市科技局国际合作项目(2019-GH02-00040-HZ)

Abstract:

The traditional ultrasound Vector Flow Mapping (VFM) technology has the limitation that it requires the proprietary software to obtain raw Doppler and speckle tracking data. In order to solve the problem, a universal VFM method combined with deep learning was proposed. Firstly, the velocity scale was used to obtain the velocities along the acoustic beam direction provided by the color Doppler echocardiogram as the radial velocity components. Then, the U-Net model was used to automatically identify the contour of the left ventricular wall, the left ventricular wall velocities were calculated by the retrained CNNs for optical flow using Pyramid, Warping, and Cost volume (PWC-Net) model as the boundary condition of the continuity equation, and the velocity component of each blood particle perpendicular to the acoustic beam direction (that was the tangential velocity component) was obtained by solving the continuity equation. Finally, the velocity vector map of the heart flow field was synthesized, and the visualization of the streamline chart of the heart flow field was realized. Experimental results show that, the velocity vector map and streamline chart of the heart flow field obtained by the proposed method can accurately reflect the corresponding time phases of left ventricular, the obtained visualized results are consistent with the analysis results of the VFM workstation provided by Aloka, and conform to the characteristics of left ventricular fluid dynamics. As a universal and fast VFM method, the proposed method do not need any vendor’s technical support and proprietary software, and can further promote the application of VFM in clinical workflow.

Key words: left ventricular, color Doppler, wall motion, fluid movement, visualization

摘要:

针对传统的超声血流向量成像(VFM)技术需要专有软件来获取原始多普勒和散斑跟踪数据的限制,提出一种联合深度学习的通用VFM方法。首先,使用速度标尺获取彩色多普勒超声心动图提供的沿声束方向的速度作为径向速度分量;然后,使用U-Net模型自动识别左心室壁轮廓,通过重新训练的PWC-Net模型计算左心室壁速度作为连续性方程的边界条件,并通过求解连续性方程获取各血液质点垂直于声束方向的速度分量(即切向速度分量);最后,合成心脏流场速度矢量图,并实现心脏流场流线图的可视化。实验结果表明,所提方法得到的心脏流场速度矢量图和流线图能准确反映左心室所对应的时相,得到的可视化结果与Aloka提供的VFM工作站的分析结果是一致的,符合左心室流体动力学特征。所提方法作为一种通用、快速的VFM方法,不需要任何供应商的技术支持和专有软件,可以进一步推进VFM在临床工作流程中的应用。

关键词: 左心室, 彩色多普勒, 室壁运动, 流体运动, 可视化

CLC Number: