[1] Symantec. Internet security threat report[EB/OL].[2017-04-17].https://pages.cobweb.com/acton/ct/15730/s-02c4-1705/Bct/l-0170/l-0170:11/ct25_1/1?sid=TV2%3AxBhBdhisn. [2] ANDERSON B, LANE T, HASH C. Malware phylogenetics based on the multiview graphical lasso[C]//Proceedings of the 2014 International Symposium on Intelligent Data Analysis, LNCS 8819. Cham:Springer, 2014:1-12. [3] ALAZAB M. Profiling and classifying the behavior of malicious codes[J]. Journal of Systems and Software, 2015, 100:91-102. [4] YOO I. Visualizing windows executable viruses using self-organizing maps[C]//Proceedings of the 2004 ACM Workshop on Visualization and Data Mining for Computer Security. New York:ACM, 2004:82-89. [5] HAN K S, LIM J H, KANG B, et al. Malware analysis using visualized images and entropy graphs[J]. International Journal of Information Security, 2015,14(1):1-14. [6] 任卓君,陈光. 熵可视化方法在恶意代码分类中的应用[J]. 计算机工程, 2017, 43(9):167-171. (REN Z J, CHEN G. Application of entropy visualization method in malware classification[J]. Computer Engineering, 2017, 43(9):167-171.) [7] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images:visualization and automatic classification[C]//Proceedings of the 8th International Symposium on Visualization for Cyber Security. New York:ACM, 2011:No.4. [8] CUI Z, XUE F, CAI X, et al. Detection of malicious code variants based on deep learning[J]. IEEE Transactions on Industrial Informatics, 2018,14(7):3187-3196. [9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2015-04-10].https://arxiv.org/pdf/1409.1556.pdf. [10] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2017-01-30].https://arxiv.org/pdf/1412.6980.pdf. [11] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2012-07-03].https://arxiv.org/pdf/1207.0580v1.pdf. [12] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15:1929-1958. [13] TIELEMAN T, HINTON G. Lecture 6.5-rmsprop:divide the gradient by a running average of its recent magnitude[J]. Neural Networks for Machine Learning, 2012, 4:26-30. [14] PARK H, AMARI S I, FUKUMIZU K. Adaptive natural gradient learning algorithms for various stochastic models[J]. Neural Networks, 2000, 13(7):755-764. [15] PAPA G, BIANCHI P, CLÉMENÇON S. Adaptive sampling for incremental optimization using stochastic gradient descent[C]//Proceedings of the 2015 International Conference on Algorithmic Learning Theory, LNCS 9355. Cham:Springer, 2015:317-331. |