Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3164-3170.DOI: 10.11772/j.issn.1001-9081.2021010060
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Junwei REN1, Cheng ZENG1,2,3(), Siyu XIAO1, Jinxia QIAO1, Peng HE1,2,3
Received:
2021-01-13
Revised:
2021-04-23
Accepted:
2021-04-29
Online:
2021-05-12
Published:
2021-11-10
Contact:
Cheng ZENG
About author:
REN Junwei,born in 1992,M. S. candidate. His research interests include knowledge graph,recommender systemSupported by:
任俊伟1, 曾诚1,2,3(), 肖丝雨1, 乔金霞1, 何鹏1,2,3
通讯作者:
曾诚
作者简介:
任俊伟(1992—),男,湖北宜昌人,硕士研究生,主要研究方向:知识图谱、推荐系统基金资助:
CLC Number:
Junwei REN, Cheng ZENG, Siyu XIAO, Jinxia QIAO, Peng HE. Session-based recommendation model of multi-granular graph neural network[J]. Journal of Computer Applications, 2021, 41(11): 3164-3170.
任俊伟, 曾诚, 肖丝雨, 乔金霞, 何鹏. 基于会话的多粒度图神经网络推荐模型[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3164-3170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010060
数据集 | 训练集 会话数 | 测试集 会话数 | 物品数 | 类别数 |
---|---|---|---|---|
Yoochoose 1/4 | 5 917 745 | 55 898 | 29 618 | 98 |
Yoochoose 1/64 | 369 859 | 55 898 | 16 766 | 42 |
Diginetica | 719 470 | 60 853 | 43 097 | 1 159 |
Tab. 1 Dataset statistics
数据集 | 训练集 会话数 | 测试集 会话数 | 物品数 | 类别数 |
---|---|---|---|---|
Yoochoose 1/4 | 5 917 745 | 55 898 | 29 618 | 98 |
Yoochoose 1/64 | 369 859 | 55 898 | 16 766 | 42 |
Diginetica | 719 470 | 60 853 | 43 097 | 1 159 |
方法 | Yoochoose 1/64 | Yoochoose1/4 | Diginetica | |||
---|---|---|---|---|---|---|
Precision@20 | MRR @20 | Precision @20 | MRR @20 | Precision @20 | MRR @20 | |
POP | 6.71 | 1.65 | 1.33 | 0.30 | 0.89 | 0.20 |
S-POP | 30.44 | 18.35 | 27.08 | 17.75 | 21.06 | 13.68 |
Item-KNN | 51.60 | 21.81 | 52.31 | 21.70 | 35.75 | 11.57 |
BPR-MF | 31.31 | 12.08 | 3.40 | 1.57 | 5.24 | 1.98 |
FPMC | 45.62 | 15.01 | — | — | 26.53 | 6.95 |
GRU4REC | 60.64 | 22.89 | 59.53 | 22.60 | 29.45 | 8.33 |
NARM | 68.32 | 28.63 | 69.73 | 29.23 | 49.70 | 16.17 |
STAMP | 68.74 | 29.67 | 70.44 | 30.00 | 45.64 | 14.32 |
SRGNN | 68.69 | 29.36 | 69.90 | 30.30 | 49.56 | 16.92 |
SRMGNN | 69.16 | 29.80 | 70.62 | 31.28 | 50.16 | 17.04 |
Tab. 2 Experimental result comparison of different methods
方法 | Yoochoose 1/64 | Yoochoose1/4 | Diginetica | |||
---|---|---|---|---|---|---|
Precision@20 | MRR @20 | Precision @20 | MRR @20 | Precision @20 | MRR @20 | |
POP | 6.71 | 1.65 | 1.33 | 0.30 | 0.89 | 0.20 |
S-POP | 30.44 | 18.35 | 27.08 | 17.75 | 21.06 | 13.68 |
Item-KNN | 51.60 | 21.81 | 52.31 | 21.70 | 35.75 | 11.57 |
BPR-MF | 31.31 | 12.08 | 3.40 | 1.57 | 5.24 | 1.98 |
FPMC | 45.62 | 15.01 | — | — | 26.53 | 6.95 |
GRU4REC | 60.64 | 22.89 | 59.53 | 22.60 | 29.45 | 8.33 |
NARM | 68.32 | 28.63 | 69.73 | 29.23 | 49.70 | 16.17 |
STAMP | 68.74 | 29.67 | 70.44 | 30.00 | 45.64 | 14.32 |
SRGNN | 68.69 | 29.36 | 69.90 | 30.30 | 49.56 | 16.92 |
SRMGNN | 69.16 | 29.80 | 70.62 | 31.28 | 50.16 | 17.04 |
1 | ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749. 10.1109/tkde.2005.99 |
2 | 黄立威,江碧涛,吕守业,等.基于深度学习的推荐系统研究综述[J].计算机学报,2018,41(7):1619-1647. 10.11897/SP.J.1016.2018.01619 |
HUANG L W, JIANG B T, LYU S Y, et al. Survey on deep learning based recommender systems [J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. 10.11897/SP.J.1016.2018.01619 | |
3 | SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization [C]// Proceedings of the 2007 20th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2007: 1257-1264. 10.1145/1390156.1390267 |
4 | KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems [J]. Computer, 2009, 42(8): 30-37. 10.1109/mc.2009.263 |
5 | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms [C]// Proceedings of the 2001 10th International World Wide Web Conference. New York: ACM, 2001: 285-295. 10.1145/371920.372071 |
6 | SHANI G, HECKERMAN D, BRAFMAN R I. An MDP-based recommender system [J]. Journal of Machine Learning Research, 2005, 6:1265-1295. 10.1007/11564096_35 |
7 | GU W R, DONG S B, ZENG Z Z. Increasing recommended effectiveness with Markov chains and purchase intervals [J]. Neural Computing and Applications, 2014, 25(5):1153-1162. 10.1007/s00521-014-1599-8 |
8 | ZHANG Y Y, DAI H J, XU C, et al. Sequential click prediction for sponsored search with recurrent neural networks [C]// Proceedings of the 2014 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2014: 1369-1375. 10.1609/aaai.v33i01.33017144 |
9 | LIU Q, WU S, WANG L, et al. Predicting the next location: a recurrent model with spatial and temporal contexts [C]// Proceedings of the 2016 30th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2016: 194-200. |
10 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. [2020-12-11]. . 10.1145/3269206.3271761 |
11 | TUAN T X, PHUONG T M. 3D convolutional networks for session-based recommendation with content features [C]// Proceedings of the 2017 11th ACM Conference on Recommender Systems. New York: ACM, 2017: 138-146. 10.1145/3109859.3109900 |
12 | LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM Conference on Information and Knowledge Management. New York: ACM, 2017: 1419-1428. 10.1145/3132847.3132926 |
13 | LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 2018 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1831-1839. 10.1145/3219819.3219950 |
14 | MENG W J, YANG D Q, XIAO Y H. Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation [C]// Proceedings of the 2020 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1091-1100. 10.1145/3397271.3401098 |
15 | LI Z Y, DING X, LIU T. Constructing narrative event evolutionary graph for script event prediction [C]// Proceedings of the 2018 27th International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 4201-4207. 10.24963/ijcai.2018/584 |
16 | LI R Y, TAPASWI M, LIAO R J, et al. Situation recognition with graph neural networks [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4183-4192. 10.1109/iccv.2017.448 |
17 | MARINO K, SALAKHUTDINOV R, GUPTA A. The more you know: using knowledge graphs for image classification [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 20-28. 10.1109/cvpr.2017.10 |
18 | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations [C]// Proceedings of the 2014 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710. 10.1145/2623330.2623732 |
19 | GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks [C]// Proceedings of the 2016 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. 10.1145/2939672.2939754 |
20 | TANG J, QU M, WANG M Z, et al. LINE: large-scale information network embedding [C]// Proceedings of the 2015 24th International Conference on World Wide Web. New York:ACM, 2015: 1067-1077. 10.1145/2736277.2741093 |
21 | DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints [C]// Proceedings of the 2015 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015: 2224-2232. |
22 | GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains [C]// Proceedings of the 2005 IEEE International Joint Conference on Neural Networks. Piscataway: IEEE, 2005: 729-734. 10.1109/ijcnn.2005.1555942 |
23 | WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the 2019 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 346-353. 10.1609/aaai.v33i01.3301346 |
24 | XU C F, ZHAP P P, LIU Y C, et al. Graph contextualized self-attention network for session-based recommendation [C]// Proceedings of the 2019 28th International Joint Conference on Artificial Intelligence. New York:ACM, 2019: 3940-3946. 10.24963/ijcai.2019/547 |
25 | SONG W P, XIAO Z P, WANG Y F, et al. Session-based social recommendation via dynamic graph attention networks [C]// Proceedings of the 2019 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 555-563. 10.1145/3289600.3290989 |
26 | YU F, ZHU Y Q, LIU Q, et al. TAGNN: target attentive graph neural networks for session-based recommendation [C]// Proceedings of the 2020 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1921-1924. 10.1145/3397271.3401319 |
27 | WANG Z Y, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation [C]// Proceedings of the 2020 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178. 10.1145/3397271.3401142 |
28 | CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [EB/OL]. [2020-12-10]. . |
29 | TAN Y K, XU X X, LIU Y. Improved recurrent neural networks for session-based recommendations [C]// Proceedings of the 2016 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 17-22. 10.1145/2988450.2988452 |
30 | DAVIDSON J, LIEBALD B, LIU J N, et al. The YouTube video recommendation system [C]// Proceedings of the 2010 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 293-296. 10.1145/1864708.1864770 |
31 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 2009 25th Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2009: 452-461. |
32 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation [C]// Proceedings of the 2010 19th International World Wide Web Conference. New York: ACM, 2010: 811-820. 10.1145/1772690.1772773 |
[1] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[2] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[3] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[4] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[5] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[6] | Fan MENG, Qunli YANG, Jing HUO, Xinkuan WANG. EraseMTS: iterative active multivariable time series anomaly detection algorithm based on margin anomaly candidate set [J]. Journal of Computer Applications, 2024, 44(5): 1458-1463. |
[7] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[8] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[9] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[10] | Yuhao TANG, Dezhong PENG, Zhong YUAN. Fuzzy multi-granularity anomaly detection for incomplete mixed data [J]. Journal of Computer Applications, 2024, 44(10): 3097-3104. |
[11] | Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network [J]. Journal of Computer Applications, 2023, 43(9): 2741-2746. |
[12] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
[13] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
[14] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[15] | Zifang XIA, Yaxin YU, Ziteng WANG, Jiaqi QIAO. Explainable recommendation mechanism by fusion collaborative knowledge graph and counterfactual inference [J]. Journal of Computer Applications, 2023, 43(7): 2001-2009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||