Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 265-272.DOI: 10.11772/j.issn.1001-9081.2021010206
• Frontier and comprehensive applications • Previous Articles Next Articles
Huiqing XU1,2, Bin CHEN2(), Jingfei WANG3,4, Zhiyi CHEN3,4, Jian QIN5
Received:
2021-02-03
Revised:
2021-04-25
Accepted:
2021-04-28
Online:
2022-01-11
Published:
2022-01-10
Contact:
Bin CHEN
About author:
XU Huiqing, born in 1989, Ph. D. candidate. His research interests include target detection, semantic segmentation, intelligent detection of pavement distress.
许慧青1,2, 陈斌2(), 王敬飞3,4, 陈志毅3,4, 覃健5
通讯作者:
陈斌
作者简介:
许慧青(1989—),男,河南汝南人,博士研究生,主要研究方向:目标检测、语义分割、路面病害智能检测CLC Number:
Huiqing XU, Bin CHEN, Jingfei WANG, Zhiyi CHEN, Jian QIN. Elongated pavement distress detection method based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(1): 265-272.
许慧青, 陈斌, 王敬飞, 陈志毅, 覃健. 基于卷积神经网络的细长路面病害检测方法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 265-272.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010206
类别 | 训练集图像数 | 测试集图像数 | 图像的总数 |
---|---|---|---|
纵向裂缝 | 1 866 | 207 | 2 073 |
横向裂缝 | 1 901 | 211 | 2 112 |
修补 | 1 923 | 213 | 2 136 |
修补不良 | 1 911 | 212 | 2 123 |
Tab. 1 Number of images in training set and test set
类别 | 训练集图像数 | 测试集图像数 | 图像的总数 |
---|---|---|---|
纵向裂缝 | 1 866 | 207 | 2 073 |
横向裂缝 | 1 901 | 211 | 2 112 |
修补 | 1 923 | 213 | 2 136 |
修补不良 | 1 911 | 212 | 2 123 |
锚框机制 | 尺度 | 长宽比 |
---|---|---|
FPN | [ | [0.5, 1.0, 2.0] |
MSAM | [ | [0.04, 0.1, 0.5, 1.0, 2.0, 10.0, 25.0] |
Tab. 2 Two anchor box mechanisms used in training process
锚框机制 | 尺度 | 长宽比 |
---|---|---|
FPN | [ | [0.5, 1.0, 2.0] |
MSAM | [ | [0.04, 0.1, 0.5, 1.0, 2.0, 10.0, 25.0] |
检测方法 | 骨干网络 |
---|---|
Faster RCNN | ResNet101 |
Faster RCNN+ | VovNetV2-57 |
Epd RCNN- | HRNETV2-W32 |
Epd RCNN | HRNet++ |
Tab. 3 Backbone networks and detection methods in comparison experiments
检测方法 | 骨干网络 |
---|---|
Faster RCNN | ResNet101 |
Faster RCNN+ | VovNetV2-57 |
Epd RCNN- | HRNETV2-W32 |
Epd RCNN | HRNet++ |
检测方法 | 骨干网络 | 平均精度 | mAP | mAP_B | mAP_D | |||
---|---|---|---|---|---|---|---|---|
纵向裂缝 | 横向裂缝 | 修补 | 修补不良 | |||||
Faster RCNN | ResNet101 | 0.423 | 0.472 | 0.663 | 0.499 | 0.514 | 0.519 | 0.510 |
Faster RCNN + | 0.456 | 0.495 | 0.683 | 0.534 | 0.542 | 0.551 | 0.533 | |
Epd RCNN- | 0.472 | 0.497 | 0.689 | 0.552 | 0.552 | 0.557 | 0.548 | |
Epd RCNN | 0.516 | 0.524 | 0.723 | 0.608 | 0.592 | 0.598 | 0.587 | |
Faster RCNN | VoVNetV2-57 | 0.435 | 0.488 | 0.672 | 0.512 | 0.526 | 0.531 | 0.523 |
Faster RCNN + | 0.446 | 0.492 | 0.692 | 0.523 | 0.538 | 0.542 | 0.534 | |
Epd RCNN- | 0.491 | 0.522 | 0.701 | 0.543 | 0.564 | 0.568 | 0.561 | |
Epd RCNN | 0.526 | 0.525 | 0.715 | 0.614 | 0.595 | 0.603 | 0.587 | |
Faster RCNN | HRNetV2-W32 | 0.549 | 0.564 | 0.765 | 0.659 | 0.634 | 0.641 | 0.616 |
Faster RCNN + | 0.556 | 0.596 | 0.779 | 0.662 | 0.648 | 0.651 | 0.646 | |
Epd RCNN- | 0.637 | 0.655 | 0.804 | 0.728 | 0.706 | 0.711 | 0.701 | |
Epd RCNN | 0.686 | 0.683 | 0.809 | 0.774 | 0.738 | 0.742 | 0.734 | |
Faster RCNN | HRNet++ | 0.625 | 0.718 | 0.826 | 0.774 | 0.736 | 0.739 | 0.733 |
Faster RCNN + | 0.703 | 0.732 | 0.846 | 0.792 | 0.768 | 0.771 | 0.766 | |
Epd RCNN- | 0.773 | 0.788 | 0.863 | 0.818 | 0.811 | 0.820 | 0.801 | |
Epd RCNN | 0.893 | 0.895 | 0.912 | 0.897 | 0.899 | 0.907 | 0.891 |
Tab. 4 Comparison of elongated pavement distress detection performance on test set
检测方法 | 骨干网络 | 平均精度 | mAP | mAP_B | mAP_D | |||
---|---|---|---|---|---|---|---|---|
纵向裂缝 | 横向裂缝 | 修补 | 修补不良 | |||||
Faster RCNN | ResNet101 | 0.423 | 0.472 | 0.663 | 0.499 | 0.514 | 0.519 | 0.510 |
Faster RCNN + | 0.456 | 0.495 | 0.683 | 0.534 | 0.542 | 0.551 | 0.533 | |
Epd RCNN- | 0.472 | 0.497 | 0.689 | 0.552 | 0.552 | 0.557 | 0.548 | |
Epd RCNN | 0.516 | 0.524 | 0.723 | 0.608 | 0.592 | 0.598 | 0.587 | |
Faster RCNN | VoVNetV2-57 | 0.435 | 0.488 | 0.672 | 0.512 | 0.526 | 0.531 | 0.523 |
Faster RCNN + | 0.446 | 0.492 | 0.692 | 0.523 | 0.538 | 0.542 | 0.534 | |
Epd RCNN- | 0.491 | 0.522 | 0.701 | 0.543 | 0.564 | 0.568 | 0.561 | |
Epd RCNN | 0.526 | 0.525 | 0.715 | 0.614 | 0.595 | 0.603 | 0.587 | |
Faster RCNN | HRNetV2-W32 | 0.549 | 0.564 | 0.765 | 0.659 | 0.634 | 0.641 | 0.616 |
Faster RCNN + | 0.556 | 0.596 | 0.779 | 0.662 | 0.648 | 0.651 | 0.646 | |
Epd RCNN- | 0.637 | 0.655 | 0.804 | 0.728 | 0.706 | 0.711 | 0.701 | |
Epd RCNN | 0.686 | 0.683 | 0.809 | 0.774 | 0.738 | 0.742 | 0.734 | |
Faster RCNN | HRNet++ | 0.625 | 0.718 | 0.826 | 0.774 | 0.736 | 0.739 | 0.733 |
Faster RCNN + | 0.703 | 0.732 | 0.846 | 0.792 | 0.768 | 0.771 | 0.766 | |
Epd RCNN- | 0.773 | 0.788 | 0.863 | 0.818 | 0.811 | 0.820 | 0.801 | |
Epd RCNN | 0.893 | 0.895 | 0.912 | 0.897 | 0.899 | 0.907 | 0.891 |
1 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 936-944. 10.1109/cvpr.2017.106 |
2 | LI Z M, PENG C, YU G, et al. DetNet: design backbone for object detection[C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS11213. Cham: Springer, 2018: 339-354. |
3 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
4 | 初秀民,王荣本,储江伟,等. 基于不变矩特征的沥青路面破损图像识别[J]. 吉林大学学报(工学版), 2003, 33(1): 1-7. 10.3969/j.issn.1671-5497.2003.01.001 |
CHU X M, WANG R B, CHU J W, et al. Asphalt pavement surface distress image recognition based on moment invariant feature[J]. Journal of Jilin University (Engineering and Technology Edition), 2003, 33(1): 1-7. 10.3969/j.issn.1671-5497.2003.01.001 | |
5 | AYENU-PRAH A, ATTOH-OKINE N. Evaluating pavement cracks with bidimensional empirical mode decomposition[J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008: No.861701. 10.1155/2008/861701 |
6 | DIXIT A, WAGATSUMA H. Investigating the effectiveness of the Sobel operator in the MCA-based automatic crack detection[C]// Proceedings of the 4th International Conference on Optimization and Applications. Piscataway: IEEE, 2018: 1-6. 10.1109/icoa.2018.8370555 |
7 | TANG J S, GU Y L. Automatic crack detection and segmentation using a hybrid algorithm for road distress analysis[C]// Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2013: 3026-3030. 10.1109/smc.2013.516 |
8 | LI Q Q, LIU X L. Novel approach to pavement image segmentation based on neighboring difference histogram method[C]// Proceedings of the 2008 Congress on Image and Signal Processing. Piscataway: IEEE, 2008: 792-796. 10.1109/CISP.2008.13 |
9 | OLIVEIRA H, CORREIA P L. Automatic road crack segmentation using entropy and image dynamic thresholding[C]// Proceedings of the 17th European Signal Processing Conference. Piscataway: IEEE, 2009: 622-626. 10.1109/icip.2010.5653305 |
10 | CHENG H D, MIYOJIM M. Automatic pavement distress detection system[J]. Information Sciences, 1998, 108(1/2/3/4): 219-240. 10.1016/s0020-0255(97)10062-7 |
11 | HU Y, ZHAO C X. A novel local binary pattern based methods for pavement crack detection[J]. Journal of Pattern Recognition Research, 2010, 5(1): 140-147. 10.13176/11.167 |
12 | SALMAN M, MATHAVAN S, KAMAL K, et al. Pavement crack detection using the Gabor filter[C]// Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2013: 2039-2044. 10.1109/itsc.2013.6728529 |
13 | KAPELA R, ŚNIATAŁA P, TURKOT A, et al. Asphalt surfaced pavement cracks detection based on histograms of oriented gradients[C]// Proceedings of the 22nd International Conference “Mixed Design of Integrated Circuits and Systems”. Piscataway: IEEE, 2015: 579-584. 10.1109/mixdes.2015.7208590 |
14 | HADJI I, WILDES R P. What do we understand about convolutional networks ?[EB/OL]. (2018-03-23) [2020-03-01].. |
15 | 沙爱民,童峥,高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国路面学报, 2018, 31(1): 1-10. |
SHA A M, TONG Z, GAO J. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. | |
16 | ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural network[C]// Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3708-3712. 10.1109/icip.2016.7533052 |
17 | WANG X L, HU Z Z. Grid-based pavement crack analysis using deep learning[C]// Proceedings of the 4th International Conference on Transportation Information and Safety. Piscataway: IEEE, 2017: 917-924. 10.1109/ictis.2017.8047878 |
18 | YANG X C, LI H, YU Y T, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. 10.1111/mice.12412 |
19 | HUANG H W, LI Q T, ZHANG D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176. 10.1016/j.tust.2018.04.002 |
20 | FAN R, BOCUS M J, ZHU Y L, et al. Road crack detection using deep convolutional neural network and adaptive thresholding[C]// Proceedings of the 2019 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2019: 474-479. 10.1109/ivs.2019.8814000 |
21 | SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. 10.1109/tpami.2016.2572683 |
22 | MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141. 10.1111/mice.12387 |
23 | WANG W Z, WU B, YANG S X, et al. Road damage detection and classification with Faster R-CNN[C]// Proceedings of the 2018 IEEE International Conference on Big Data. Piscataway: IEEE, 2018: 5220-5223. 10.1109/bigdata.2018.8622354 |
24 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. 10.1109/tpami.2016.2577031 |
25 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 |
26 | ANAND S, GUPTA S, DARBARI V, et al. Crack-pot: autonomous road crack and pothole detection[C]// Proceedings of the 2018 Digital Image Computing: Techniques and Applications. Piscataway: IEEE, 2018: 1-6. 10.1109/dicta.2018.8615819 |
27 | ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9300-9308. 10.1109/cvpr.2019.00953 |
28 | WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. 10.1109/tpami.2020.2983686 |
29 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
30 | BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations: fast and flexible image augmentations[J]. Information, 2020, 11(2): No.125. 10.3390/info11020125 |
31 | EVERINGHAM M, GOOL L VAN, WILLIAMS C K I, et al. The PASCAL Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. 10.1007/s11263-009-0275-4 |
32 | CHEN K, PANG J Q, WANG J M, et al. MMDetection: open MMLab detection toolbox and benchmark[EB/OL]. (2019-06-17) [2020-07-12].. |
33 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS8693. Cham: Springer, 2014: 740-755. |
34 | LEE Y, PARK J. CenterMask: real-time anchor-free instance segmentation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13903-13912. 10.1109/cvpr42600.2020.01392 |
[1] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[2] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[3] | Chenqian LI, Jun LIU. Ultrasound carotid plaque segmentation method based on semi-supervision and multi-scale cascaded attention [J]. Journal of Computer Applications, 2024, 44(8): 2604-2610. |
[4] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[5] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
[6] | Yuan TANG, Yanping CHEN, Ying HU, Ruizhang HUANG, Yongbin QIN. Relation extraction model based on multi-scale hybrid attention convolutional neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2011-2017. |
[7] | Yangyi GAO, Tao LEI, Xiaogang DU, Suiyong LI, Yingbo WANG, Chongdan MIN. Crowd counting and locating method based on pixel distance map and four-dimensional dynamic convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2233-2242. |
[8] | Mengyuan HUANG, Kan CHANG, Mingyang LING, Xinjie WEI, Tuanfa QIN. Progressive enhancement algorithm for low-light images based on layer guidance [J]. Journal of Computer Applications, 2024, 44(6): 1911-1919. |
[9] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[10] | Wenshuo GAO, Xiaoyun CHEN. Point cloud classification network based on node structure [J]. Journal of Computer Applications, 2024, 44(5): 1471-1478. |
[11] | Min SUN, Qian CHENG, Xining DING. CBAM-CGRU-SVM based malware detection method for Android [J]. Journal of Computer Applications, 2024, 44(5): 1539-1545. |
[12] | Tianhua CHEN, Jiaxuan ZHU, Jie YIN. Bird recognition algorithm based on attention mechanism [J]. Journal of Computer Applications, 2024, 44(4): 1114-1120. |
[13] | Lijun XU, Hui LI, Zuyang LIU, Kansong CHEN, Weixuan MA. 3D-GA-Unet: MRI image segmentation algorithm for glioma based on 3D-Ghost CNN [J]. Journal of Computer Applications, 2024, 44(4): 1294-1302. |
[14] | Jie WANG, Hua MENG. Image classification algorithm based on overall topological structure of point cloud [J]. Journal of Computer Applications, 2024, 44(4): 1107-1113. |
[15] | Jingxian ZHOU, Xina LI. UAV detection and recognition based on improved convolutional neural network and radio frequency fingerprint [J]. Journal of Computer Applications, 2024, 44(3): 876-882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||