Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 599-605.DOI: 10.11772/j.issn.1001-9081.2021020292
• Frontier and comprehensive applications • Previous Articles Next Articles
Received:
2021-02-26
Revised:
2021-04-12
Accepted:
2021-04-13
Online:
2022-02-11
Published:
2022-02-10
Contact:
Aihong ZHU
About author:
ZHANG Jing, born in 1994, M. S. candidate. His research interests include traffic control system.Supported by:
通讯作者:
朱爱红
作者简介:
张京(1994—),男,湖北黄冈人,硕士研究生,主要研究方向:交通控制系统;基金资助:
CLC Number:
Jing ZHANG, Aihong ZHU. Optimization method of automatic train operation speed curve based on genetic algorithm and particle swarm optimization[J]. Journal of Computer Applications, 2022, 42(2): 599-605.
张京, 朱爱红. 基于遗传算法和粒子群优化的列车自动驾驶速度曲线优化方法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 599-605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020292
当前工况 | 待转换的工况 | ||
---|---|---|---|
牵引 | 惰行 | 制动 | |
牵引 | 无需转换 | 可以转换 | 禁止转换 |
惰行 | 可以转换 | 无需转换 | 可以转换 |
制动 | 禁止转换 | 可以转换 | 无需转换 |
Tab. 1 Principles of operating mode changing
当前工况 | 待转换的工况 | ||
---|---|---|---|
牵引 | 惰行 | 制动 | |
牵引 | 无需转换 | 可以转换 | 禁止转换 |
惰行 | 可以转换 | 无需转换 | 可以转换 |
制动 | 禁止转换 | 可以转换 | 无需转换 |
参数 | 特性 |
---|---|
车辆总重 | 428 t |
最高车速 | 300 km/h |
基本阻力 | w=0.66+0.002 45v+0.000 132v2(kN) |
牵引特性 | |
制动特性 |
Tab. 2 Performance parameters of simulated train
参数 | 特性 |
---|---|
车辆总重 | 428 t |
最高车速 | 300 km/h |
基本阻力 | w=0.66+0.002 45v+0.000 132v2(kN) |
牵引特性 | |
制动特性 |
线路基本属性 | 值 |
---|---|
线路长度 | 80 km |
运行时间 | 1 560 s |
分相区1 | (24.273 1~25.026 3)km |
分相区2 | (55.419 6~55.852 7)km |
Tab. 3 Basic attributes of simulated line
线路基本属性 | 值 |
---|---|
线路长度 | 80 km |
运行时间 | 1 560 s |
分相区1 | (24.273 1~25.026 3)km |
分相区2 | (55.419 6~55.852 7)km |
评价对象 | 运行距离/m | 运行时间/s | 舒适度指标 | 能耗/kJ |
---|---|---|---|---|
优化前(节时模式) | 79 999.738 2 | 1 522.260 5 | 1.586 5 | 5 050 530.864 3 |
PSO | 79 999.759 2 | 1 588.767 2 | 1.185 7 | 4 699 292.956 7 |
CPSO | 79 999.803 5 | 1 584.936 7 | 1.175 4 | 4 635 466.404 5 |
GAPSO | 79 999.830 9 | 1 571.316 4 | 1.158 3 | 4 489 659.952 4 |
考虑分相区GAPSO | 79 999.794 8 | 1 583.254 7 | 1.164 2 | 4 378 893.326 0 |
Tab. 4 Comparison of ATO optimization results under different modes
评价对象 | 运行距离/m | 运行时间/s | 舒适度指标 | 能耗/kJ |
---|---|---|---|---|
优化前(节时模式) | 79 999.738 2 | 1 522.260 5 | 1.586 5 | 5 050 530.864 3 |
PSO | 79 999.759 2 | 1 588.767 2 | 1.185 7 | 4 699 292.956 7 |
CPSO | 79 999.803 5 | 1 584.936 7 | 1.175 4 | 4 635 466.404 5 |
GAPSO | 79 999.830 9 | 1 571.316 4 | 1.158 3 | 4 489 659.952 4 |
考虑分相区GAPSO | 79 999.794 8 | 1 583.254 7 | 1.164 2 | 4 378 893.326 0 |
1 | KIM K, CHIEN S I J. Simulation-based analysis of train controls under various track alignments[J]. Journal of Transportation Engineering, 2010, 136(11): 937-948. 10.1061/(asce)te.1943-5436.0000160 |
2 | BOCHARNIKOV Y V, TOBIAS A M, ROBERTS C, et al. Optimal driving strategy for traction energy saving on DC suburban railway[J]. IET Electric Power Applications, 2007, 1(5): 675-682. 10.1049/iet-epa:20070005 |
3 | 付印平,高自友,李克平.路网中的列车节能操纵优化方法研究[J].交通运输系统工程与信息, 2009, 9(4): 90-96. 10.3969/j.issn.1009-6744.2009.04.014 |
FU Y P, GAO Z Y, LI K P. Optimization method of energy saving train operation for railway network[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(4): 90-96. 10.3969/j.issn.1009-6744.2009.04.014 | |
4 | 段玉琼,朱爱红,马晓娜,等.基于人工蜂群算法的高速列车运行节能优化研究[J].铁道标准设计, 2019, 63(9): 163-168. 10.13238/j.issn.1004-2954.201810170001 |
DUAN Y Q, ZHU A H, MA X N, et al. Research on high-speed train operation energy-saving optimization based on ABC algorithm[J]. Railway Standard Design, 2019, 63(9): 163-168. 10.13238/j.issn.1004-2954.201810170001 | |
5 | 许立.基于遗传算法的ATO速度曲线优化[D].成都:西南交通大学, 2013: 48-54. 10.3969/j.issn.1005-8451.2013.10.013 |
XU L. Optimization of ATO speed curve based on genetic algorithm[D]. Chengdu: Southwest Jiaotong University, 2013: 48-54. 10.3969/j.issn.1005-8451.2013.10.013 | |
6 | 余进,何正友,钱清泉.基于混合微粒群优化的多目标列车控制研究[J].铁道学报, 2010, 32(1): 38-42. 10.3969/j.issn.1001-8360.2010.01.007 |
YU J, HE Z Y, QIAN Q Q. Study on multi-objective train control based on hybrid particle swarm optimization[J]. Journal of the China Railway Society, 2010, 32(1): 38-42. 10.3969/j.issn.1001-8360.2010.01.007 | |
7 | 连文博,刘伯鸿,李婉婉,等.基于自抗扰控制的高速列车自动驾驶速度控制[J].铁道学报, 2020, 42(1): 76-81. 10.3969/j.issn.1001-8360.2020.01.011 |
LIAN W B, LIU B H, LI W W, et al. Automatic operation speed control of high-speed train based on ADRC[J]. Journal of the China Railway Society, 2020, 42(1): 76-81. 10.3969/j.issn.1001-8360.2020.01.011 | |
8 | 徐凯,吴磊,杨飞凤. PSO-ICS算法优化的城轨列车自动驾驶系统[J].铁道科学与工程学报, 2017, 14(12): 2704-2712. 10.3969/j.issn.1672-7029.2017.12.025 |
XU K, WU L, YANG F F. Automatic train operation system in urban rail transit based on PSO-ICS algorithm optimization[J]. Journal of Railway Science and Engineering, 2017, 14(12): 2704-2712. 10.3969/j.issn.1672-7029.2017.12.025 | |
9 | 孟建军,裴明高,武福,等.城轨列车多目标优化控制算法研究与仿真[J].系统仿真学报, 2017, 29(3): 581-588, 594. 10.16182/j.issn1004731x.joss.201703016 |
MENG J J, PEI M G, WU F, et al. Research and simulation on control algorithm for multi-objective optimization of urban rail train[J]. Journal of System Simulation, 2017, 29(3): 581-588, 594. 10.16182/j.issn1004731x.joss.201703016 | |
10 | 张友鹏,高凡,赵斌.基于灰色系统理论高速列车ATO速度控制器研究[J].计算机工程与应用, 2014, 50(10): 253-259. 10.3778/j.issn.1002-8331.1206-0185 |
ZHANG Y P, GAO F, ZHAO B. Study on speed controller of automatic train operation for high-speed train based on grey system theory[J]. Computer Engineering and Applications, 2014, 50(10): 253-259. 10.3778/j.issn.1002-8331.1206-0185 | |
11 | 徐凯,吴磊,赵梅.多种群分层联合优化的城轨列车ATO研究[J].铁道学报, 2018, 40(6): 90-96. 10.3969/j.issn.1001-8360.2018.06.012 |
XU K, WU L, ZHAO M. Study on urban rail train ATO based on unified optimization of multi-swarm hierarchical structure[J]. Journal of the China Railway Society, 2018, 40(6): 90-96. 10.3969/j.issn.1001-8360.2018.06.012 | |
12 | 石红国,彭其渊,郭寒英.城市轨道交通牵引计算模型[J].交通运输工程学报, 2005, 5(4): 20-26. 10.3321/j.issn:1671-1637.2005.04.005 |
SHI H G, PENG Q Y, GUO H Y. Traction calculation model of urban mass transit[J]. Journal of Traffic and Transportation Engineering, 2005, 5(4): 20-26. 10.3321/j.issn:1671-1637.2005.04.005 | |
13 | 孟建军,张宏强.基于改进灰色预测模糊PID控制的列车多目标优化研究[J].铁道标准设计, 2020, 64(5): 173-181. 10.13238/j.issn.1004-2954.201906050002 |
MENG J J, ZHANG H Q. A study on multi-objective train optimization based on improved grey prediction fuzzy PID control[J]. Railway Standard Design, 2020, 64(5): 173-181. 10.13238/j.issn.1004-2954.201906050002 | |
14 | 成利刚,郑云水,常树贤.列车模拟驾驶系统中列车的运行控制仿真与实现[J].科学技术与工程, 2014, 14(2): 241-246. 10.3969/j.issn.1671-1815.2014.02.055 |
CHEN L G, ZHENG Y S, CHANG S X. The train operation control simulation and implementation of train driving simulation system[J]. Science Technology and Engineering, 2014, 14(2): 241-246. 10.3969/j.issn.1671-1815.2014.02.055 | |
15 | 熊超彬.基于GSO算法的列车运行节能操纵优化研究[D].成都:西南交通大学, 2014: 17-18. |
XIONG C B. Energy-saving control for train based on GSO algorithm[D]. Chengdu: Southwest Jiaotong University, 2014: 17-18. | |
16 | 武装.几种改进的智能优化算法及其应用[M].北京:科学技术文献出版社, 2018: 27-35. |
WU Z. Several Improved Intelligent Optimization Algorithms and Their Applications[M]. Beijing: Scientific and Technical Documentation Press, 2018: 27-35. | |
17 | 郝少伟,李勇军,赵尚弘,等.基于改进粒子群算法的多载波NOMA功率分配策略[J].电子学报, 2020, 48(10): 2009-2016. 10.3969/j.issn.0372-2112.2020.10.019 |
HAO S W, LI Y J, ZHAO S H, et al. Multicarrier NOMA power allocation strategy based on improved particle swarm optimization algorithm[J]. Acta Electronica Sinica, 2020, 48(10): 2009-2016. 10.3969/j.issn.0372-2112.2020.10.019 | |
18 | 卢稳.列车自动驾驶运行过程的多目标优化研究[D].兰州:兰州交通大学, 2017: 23-27. |
LU W. Research on multi-objective optimization of train automatic driving process[D]. Lanzhou: Lanzhou Jiaotong University, 2017: 23-27. | |
19 | 张友兵,陈志强,王建敏,等.高速铁路ATO系统控车舒适度技术研究[J].铁道工程学报, 2019, 36(3): 67-71. 10.3969/j.issn.1006-2106.2019.03.012 |
ZHANG Y B, CHEN Z Q, WANG J M, et al. Research on the comfort control technology of the ATO system in high-speed railway[J]. Journal of Railway Engineering Society, 2019, 36(3): 67-71. 10.3969/j.issn.1006-2106.2019.03.012 |
[1] | Peigen GAO, Bin SUO. Experimental design and staged PSO-Kriging modeling based on weighted hesitant fuzzy set [J]. Journal of Computer Applications, 2024, 44(7): 2144-2150. |
[2] | Kaiwen ZHAO, Peng WANG, Xiangrong TONG. Two-stage search-based constrained evolutionary multitasking optimization algorithm [J]. Journal of Computer Applications, 2024, 44(5): 1415-1422. |
[3] | Lin GAO, Yu ZHOU, Tak Wu KWONG. Evolutionary bi-level adaptive local feature selection [J]. Journal of Computer Applications, 2024, 44(5): 1408-1414. |
[4] | Ye TIAN, Jinjin CHEN, Xingyi ZHANG. Hybrid optimizer combining evolutionary computation and gradient descent for constrained multi-objective optimization [J]. Journal of Computer Applications, 2024, 44(5): 1386-1392. |
[5] | Tao JIANG, Zhenyu LIANG, Ran CHENG, Yaochu JIN. GPU-accelerated evolutionary optimization of multi-objective flow shop scheduling problems [J]. Journal of Computer Applications, 2024, 44(5): 1364-1371. |
[6] | Jianqiang LI, Zhou HE. Hybrid NSGA-Ⅱ for vehicle routing problem with multi-trip pickup and delivery [J]. Journal of Computer Applications, 2024, 44(4): 1187-1194. |
[7] | Xiaoxin DU, Wei ZHOU, Hao WANG, Tianru HAO, Zhenfei WANG, Mei JIN, Jianfei ZHANG. Survey of subgroup optimization strategies for intelligent algorithms [J]. Journal of Computer Applications, 2024, 44(3): 819-830. |
[8] | Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation [J]. Journal of Computer Applications, 2024, 44(1): 269-277. |
[9] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[10] | Jun LIANG, Zehong HONG, Songsen YU. Image segmentation model based on improved particle swarm optimization algorithm and genetic mutation [J]. Journal of Computer Applications, 2023, 43(6): 1743-1749. |
[11] | Zhihui GAO, Meng HAN, Shujuan LIU, Ang LI, Dongliang MU. Survey of high utility itemset mining methods based on intelligent optimization algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1676-1686. |
[12] | Canghong JIN, Yuhua SHAO, Qinfang HE. Long-tail recommendation model based on adaptive group reranking [J]. Journal of Computer Applications, 2023, 43(4): 1122-1128. |
[13] | Zhenhua YU, Zhengqi LIU, Ying LIU, Cheng GUO. Feature selection method based on self-adaptive hybrid particle swarm optimization for software defect prediction [J]. Journal of Computer Applications, 2023, 43(4): 1206-1213. |
[14] | Feng XIANG, Zhongzhi LI, Xi XIONG, Binyong LI. Inverse distance weight interpolation algorithm based on particle swarm local optimization [J]. Journal of Computer Applications, 2023, 43(2): 385-390. |
[15] | Xuesen MA, Xuemei XU, Gonghui JIANG, Yan QIAO, Tianbao ZHOU. Hybrid adaptive particle swarm optimization algorithm for workflow scheduling [J]. Journal of Computer Applications, 2023, 43(2): 474-483. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||