Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 269-277.DOI: 10.11772/j.issn.1001-9081.2023010012
• Advanced computing • Previous Articles
Yongjian MA(), Xuhua SHI, Peiyao WANG
Received:
2023-01-06
Revised:
2023-03-26
Accepted:
2023-03-29
Online:
2023-06-06
Published:
2024-01-10
Contact:
Yongjian MA
About author:
SHI Xuhua, born in 1967, Ph. D., professor. Her research interests include system modeling and optimization.Supported by:
通讯作者:
马勇健
作者简介:
史旭华(1967—),女,浙江宁波人,教授,博士,主要研究方向:系统建模与优化;基金资助:
CLC Number:
Yongjian MA, Xuhua SHI, Peiyao WANG. Constrained multi-objective evolutionary algorithm based on two-stage search and dynamic resource allocation[J]. Journal of Computer Applications, 2024, 44(1): 269-277.
马勇健, 史旭华, 王佩瑶. 基于两阶段搜索与动态资源分配的约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 269-277.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010012
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
LIRCMOP1 | 2 | 3.259 4E-1(4.89E-2) | 3.075 3E-1(2.43E-2) | 1.076 0E-2(8.46E-3) | 2.842 5E-2(2.15E-2) | 7.974 6E-3(1.38E-3) |
LIRCMOP2 | 2 | 2.751 9E-1(3.41E-2) | 2.730 6E-1(2.18E-2) | 6.597 9E-3(9.35E-4) | 1.197 1E-2(1.02E-2) | 5.070 9E-3(2.25E-4) |
LIRCMOP3 | 2 | 3.092 8E-1(4.81E-2) | 3.378 8E-1(1.89E-2) | 2.426 4E-2(4.06E-2) | 5.082 1E-2(3.95E-2) | 3.290 8E-3(5.32E-4) |
LIRCMOP4 | 2 | 2.901 7E-1(3.36E-2) | 3.168 1E-1(1.20E-2) | 4.198 3E-2(5.47E-2) | 4.720 3E-2(2.89E-2) | 2.930 1E-3(2.44E-4) |
LIRCMOP5 | 2 | 3.035 8E-1(5.07E-2) | 1.130 6E+0(1.97E-1) | 6.8897E-3(7.09E-4)+ | 3.574 0E-1(5.41E-1) | 7.709 1E-3(4.11E-3) |
LIRCMOP6 | 2 | 3.563 0E-1(6.26E-2) | 1.289 4E+0(2.17E-1) | 7.362 3E-3(8.08E-4) | 2.221 8E-1(4.70E-1) | 5.658 3E-3(2.39E-4) |
LIRCMOP7 | 2 | 1.194 8E-1(3.03E-2) | 1.033 7E+0(8.10E-1) | 1.106 3E-1(3.56E-2) | 1.451 4E-2(2.77E-2) | 7.230 6E-3(3.16E-4) |
LIRCMOP8 | 2 | 1.714 4E-1(5.15E-2) | 1.485 0E+0(5.17E-1) | 8.855 2E-2(7.28E-2) | 1.210 6E-2(2.49E-2) | 7.247 2E-3(4.14E-4) |
LIRCMOP9 | 2 | 8.320 1E-1(2.81E-1) | 5.174 9E-1(1.31E-1) | 3.762 6E-1(4.58E-2) | 9.6915E-2(5.74E-2) | 1.335 3E-1(1.70E-1) |
LIRCMOP10 | 2 | 3.593 5E-1(1.34E-1) | 3.652 6E-1(8.41E-2) | 1.366 6E-2(3.79E-2) | 1.984 4E-2(7.38E-2) | 9.342 2E-3(2.02E-3) |
LIRCMOP11 | 2 | 2.206 5E-1(9.94E-2) | 3.543 6E-1(8.31E-2) | 2.075 9E-1(1.17E-1) | 1.902 2E-2(3.53E-2) | 5.125 5E-3(8.51E-4) |
LIRCMOP12 | 2 | 2.985 1E-1(1.30E-1) | 2.816 4E-1(9.79E-2) | 1.374 7E-1(4.50E-2) | 1.166 6E-1(8.04E-2) | 3.296 5E-2(5.61E-2) |
LIRCMOP13 | 3 | 9.2702E-2(9.47E-4)+ | 1.283 7E+0(1.38E-1) | 1.277 1E-1(4.12E-3) | 1.181 3E-1(2.01E-3) | 1.085 3E-1(1.93E-3) |
LIRCMOP14 | 3 | 9.4801E-2(8.89E-4)+ | 1.254 1E+0(1.53E-1) | 1.178 2E-1(3.71E-3) | 1.031 1E-1(2.13E-3) | 9.877 5E-2(1.40E-3) |
+/方正汇总行 | 2/12/0 | 0/14/0 | 1/12/1 | 0/11/3 |
Tab. 1 Average values and standard deviations of IGD on LIRCMOP test functions of five algorithms
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
LIRCMOP1 | 2 | 3.259 4E-1(4.89E-2) | 3.075 3E-1(2.43E-2) | 1.076 0E-2(8.46E-3) | 2.842 5E-2(2.15E-2) | 7.974 6E-3(1.38E-3) |
LIRCMOP2 | 2 | 2.751 9E-1(3.41E-2) | 2.730 6E-1(2.18E-2) | 6.597 9E-3(9.35E-4) | 1.197 1E-2(1.02E-2) | 5.070 9E-3(2.25E-4) |
LIRCMOP3 | 2 | 3.092 8E-1(4.81E-2) | 3.378 8E-1(1.89E-2) | 2.426 4E-2(4.06E-2) | 5.082 1E-2(3.95E-2) | 3.290 8E-3(5.32E-4) |
LIRCMOP4 | 2 | 2.901 7E-1(3.36E-2) | 3.168 1E-1(1.20E-2) | 4.198 3E-2(5.47E-2) | 4.720 3E-2(2.89E-2) | 2.930 1E-3(2.44E-4) |
LIRCMOP5 | 2 | 3.035 8E-1(5.07E-2) | 1.130 6E+0(1.97E-1) | 6.8897E-3(7.09E-4)+ | 3.574 0E-1(5.41E-1) | 7.709 1E-3(4.11E-3) |
LIRCMOP6 | 2 | 3.563 0E-1(6.26E-2) | 1.289 4E+0(2.17E-1) | 7.362 3E-3(8.08E-4) | 2.221 8E-1(4.70E-1) | 5.658 3E-3(2.39E-4) |
LIRCMOP7 | 2 | 1.194 8E-1(3.03E-2) | 1.033 7E+0(8.10E-1) | 1.106 3E-1(3.56E-2) | 1.451 4E-2(2.77E-2) | 7.230 6E-3(3.16E-4) |
LIRCMOP8 | 2 | 1.714 4E-1(5.15E-2) | 1.485 0E+0(5.17E-1) | 8.855 2E-2(7.28E-2) | 1.210 6E-2(2.49E-2) | 7.247 2E-3(4.14E-4) |
LIRCMOP9 | 2 | 8.320 1E-1(2.81E-1) | 5.174 9E-1(1.31E-1) | 3.762 6E-1(4.58E-2) | 9.6915E-2(5.74E-2) | 1.335 3E-1(1.70E-1) |
LIRCMOP10 | 2 | 3.593 5E-1(1.34E-1) | 3.652 6E-1(8.41E-2) | 1.366 6E-2(3.79E-2) | 1.984 4E-2(7.38E-2) | 9.342 2E-3(2.02E-3) |
LIRCMOP11 | 2 | 2.206 5E-1(9.94E-2) | 3.543 6E-1(8.31E-2) | 2.075 9E-1(1.17E-1) | 1.902 2E-2(3.53E-2) | 5.125 5E-3(8.51E-4) |
LIRCMOP12 | 2 | 2.985 1E-1(1.30E-1) | 2.816 4E-1(9.79E-2) | 1.374 7E-1(4.50E-2) | 1.166 6E-1(8.04E-2) | 3.296 5E-2(5.61E-2) |
LIRCMOP13 | 3 | 9.2702E-2(9.47E-4)+ | 1.283 7E+0(1.38E-1) | 1.277 1E-1(4.12E-3) | 1.181 3E-1(2.01E-3) | 1.085 3E-1(1.93E-3) |
LIRCMOP14 | 3 | 9.4801E-2(8.89E-4)+ | 1.254 1E+0(1.53E-1) | 1.178 2E-1(3.71E-3) | 1.031 1E-1(2.13E-3) | 9.877 5E-2(1.40E-3) |
+/方正汇总行 | 2/12/0 | 0/14/0 | 1/12/1 | 0/11/3 |
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
LIRCMOP1 | 2 | 1.104 0E-1(1.41E-2) | 1.108 9E-1(1.05E-2) | 2.359 8E-1(2.26E-3) | 2.233 1E-1(1.33E-2) | 2.372 6E-1(2.94E-4) |
LIRCMOP2 | 2 | 2.285 1E-1(1.36E-2) | 2.217 8E-1(1.65E-2) | 3.594 3E-1(4.14E-4) | 3.561 0E-1(6.29E-3) | 3.602 0E-1(1.78E-4) |
LIRCMOP3 | 2 | 1.027 9E-1(1.33E-2) | 9.302 7E-2(6.08E-3) | 1.986 3E-1(1.63E-2) | 1.867 1E-1(1.39E-2) | 2.078 5E-1(4.69E-4) |
LIRCMOP4 | 2 | 1.974 1E-1(1.45E-2) | 1.840 8E-1(1.20E-2) | 3.003 9E-1(2.31E-2) | 2.961 8E-1(1.21E-2) | 3.169 9E-1(2.83E-4) |
LIRCMOP5 | 2 | 1.547 2E-1(2.18E-2) | 8.775 9E-3(4.81E-2) | 2.915 7E-1(3.18E-4)+ | 2.027 9E-1(1.35E-1) | 2.905 4E-1(5.66E-4) |
LIRCMOP6 | 2 | 1.097 3E-1(7.05E-3) | 3.805 9E-3(1.45E-2) | 1.971 0E-1(2.17E-4)+ | 1.608 2E-1(7.32E-2) | 1.969 6E-1(1.56E-4) |
LIRCMOP7 | 2 | 2.488 5E-1(9.05E-3) | 1.100 6E-1(1.37E-1) | 2.513 3E-1(1.39E-2) | 2.909 8E-1(1.11E-2) | 2.944 9E-1(1.38E-4) |
LIRCMOP8 | 2 | 2.389 2E-1(1.27E-1) | 3.279 6E-2(8.59E-2) | 2.632 0E-1(2.25E-2) | 2.923 2E-1(9.70E-3) | 2.944 5E-1(3.81E-4) |
LIRCMOP9 | 2 | 2.921 0E-1(6.78E-2) | 3.440 9E-1(8.21E-2) | 4.531 2E-1(2.61E-2) | 5.314 0E-1(3.74E-2) | 5.086 2E-1(7.17E-2) |
LIRCMOP10 | 2 | 5.254 4E-1(6.97E-2) | 5.181 9E-1(5.00E-2) | 7.035 2E-1(1.76E-2) | 6.986 6E-1(3.93E-2) | 7.050 6E-1(5.95E-3) |
LIRCMOP11 | 2 | 5.955 5E-1(5.80E-2) | 4.638 6E-1(6.66E-2) | 5.658 0E-1(7.58E-2) | 6.852 0E-1(2.03E-2) | 6.924 0E-1(5.70E-4) |
LIRCMOP12 | 2 | 4.833 6E-1(5.88E-2) | 4.781 8E-1(5.00E-2) | 5.598 4E-1(2.02E-2) | 5.638 2E-1(3.98E-2) | 6.051 1E-1(3.02E-2) |
LIRCMOP13 | 3 | 5.563 5E-1(1.45E-3)+ | 1.121 4E-2(2.69E-2) | 5.195 9E-1(4.07E-3)+ | 5.109 5E-1(2.73E-3) | 5.168 8E-1(6.91E-3) |
LIRCMOP14 | 3 | 5.554 9E-1(9.80E-4)+ | 1.259 9E-2(4.02E-2) | 5.320 1E-1(4.06E-3) | 5.399 0E-1(2.46E-3) | 5.439 5E-1(2.35E-3) |
+/方正汇总行 | 2/12/0 | 0/14/0 | 3/11/0 | 0/12/2 |
Tab. 2 Average values and standard deviations of HV on LIRCMOP test functions of five algorithms
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
LIRCMOP1 | 2 | 1.104 0E-1(1.41E-2) | 1.108 9E-1(1.05E-2) | 2.359 8E-1(2.26E-3) | 2.233 1E-1(1.33E-2) | 2.372 6E-1(2.94E-4) |
LIRCMOP2 | 2 | 2.285 1E-1(1.36E-2) | 2.217 8E-1(1.65E-2) | 3.594 3E-1(4.14E-4) | 3.561 0E-1(6.29E-3) | 3.602 0E-1(1.78E-4) |
LIRCMOP3 | 2 | 1.027 9E-1(1.33E-2) | 9.302 7E-2(6.08E-3) | 1.986 3E-1(1.63E-2) | 1.867 1E-1(1.39E-2) | 2.078 5E-1(4.69E-4) |
LIRCMOP4 | 2 | 1.974 1E-1(1.45E-2) | 1.840 8E-1(1.20E-2) | 3.003 9E-1(2.31E-2) | 2.961 8E-1(1.21E-2) | 3.169 9E-1(2.83E-4) |
LIRCMOP5 | 2 | 1.547 2E-1(2.18E-2) | 8.775 9E-3(4.81E-2) | 2.915 7E-1(3.18E-4)+ | 2.027 9E-1(1.35E-1) | 2.905 4E-1(5.66E-4) |
LIRCMOP6 | 2 | 1.097 3E-1(7.05E-3) | 3.805 9E-3(1.45E-2) | 1.971 0E-1(2.17E-4)+ | 1.608 2E-1(7.32E-2) | 1.969 6E-1(1.56E-4) |
LIRCMOP7 | 2 | 2.488 5E-1(9.05E-3) | 1.100 6E-1(1.37E-1) | 2.513 3E-1(1.39E-2) | 2.909 8E-1(1.11E-2) | 2.944 9E-1(1.38E-4) |
LIRCMOP8 | 2 | 2.389 2E-1(1.27E-1) | 3.279 6E-2(8.59E-2) | 2.632 0E-1(2.25E-2) | 2.923 2E-1(9.70E-3) | 2.944 5E-1(3.81E-4) |
LIRCMOP9 | 2 | 2.921 0E-1(6.78E-2) | 3.440 9E-1(8.21E-2) | 4.531 2E-1(2.61E-2) | 5.314 0E-1(3.74E-2) | 5.086 2E-1(7.17E-2) |
LIRCMOP10 | 2 | 5.254 4E-1(6.97E-2) | 5.181 9E-1(5.00E-2) | 7.035 2E-1(1.76E-2) | 6.986 6E-1(3.93E-2) | 7.050 6E-1(5.95E-3) |
LIRCMOP11 | 2 | 5.955 5E-1(5.80E-2) | 4.638 6E-1(6.66E-2) | 5.658 0E-1(7.58E-2) | 6.852 0E-1(2.03E-2) | 6.924 0E-1(5.70E-4) |
LIRCMOP12 | 2 | 4.833 6E-1(5.88E-2) | 4.781 8E-1(5.00E-2) | 5.598 4E-1(2.02E-2) | 5.638 2E-1(3.98E-2) | 6.051 1E-1(3.02E-2) |
LIRCMOP13 | 3 | 5.563 5E-1(1.45E-3)+ | 1.121 4E-2(2.69E-2) | 5.195 9E-1(4.07E-3)+ | 5.109 5E-1(2.73E-3) | 5.168 8E-1(6.91E-3) |
LIRCMOP14 | 3 | 5.554 9E-1(9.80E-4)+ | 1.259 9E-2(4.02E-2) | 5.320 1E-1(4.06E-3) | 5.399 0E-1(2.46E-3) | 5.439 5E-1(2.35E-3) |
+/方正汇总行 | 2/12/0 | 0/14/0 | 3/11/0 | 0/12/2 |
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
MW1 | 2 | 3.416 1E-3(4.15E-3) | 1.062 5E-2(2.59E-2) | 5.741 0E-3(1.19E-2) | 3.575 8E-3(8.39E-3) | 1.620 1E-3(1.45E-5) |
MW2 | 2 | 2.323 9E-2(1.02E-2) | 2.326 0E-2(1.58E-2) | 3.972 0E-2(2.54E-2) | 2.046 9E-2(7.36E-3) | 1.504 7E-2(7.72E-3) |
MW3 | 2 | 5.394 1E-3(3.55E-4) | 6.060 2E-3(5.05E-4) | 6.696 1E-3(9.02E-4) | 4.887 8E-3(3.14E-4) | 4.753 4E-3(2.20E-4) |
MW4 | 3 | 4.189 7E-2(4.39E-4) | 5.613 4E-2(2.94E-3) | 5.501 3E-2(1.83E-3) | 4.075 1E-2(3.57E-4) | 4.101 4E-2(4.85E-4) |
MW5 | 2 | 2.890 5E-2(4.23E-2) | 3.109 4E-1(3.60E-1) | 1.794 2E-1(2.88E-1) | 1.231 7E-3(7.70E-4) | 1.590 4E-3(1.34E-3) |
MW6 | 2 | 2.869 8E-2(2.40E-2) | 3.819 3E-2(7.73E-2) | 1.065 6E-1(1.71E-1) | 5.192 0E-2(1.20E-1) | 1.210 0E-2(7.11E-3) |
MW7 | 2 | 1.731 7E-2(2.08E-2) | 6.637 4E-2(1.54E-1) | 2.627 9E-2(2.22E-2) | 4.451 3E-3(3.12E-4)+ | 5.093 3E-3(6.14E-4) |
MW8 | 3 | 5.093 5E-2(8.45E-3) | 5.812 7E-2(5.33E-3) | 7.331 7E-2(2.70E-2) | 4.865 7E-2(1.42E-2) | 4.485 7E-2(3.00E-3) |
MW9 | 2 | 2.275 6E-1(2.80E-1) | 3.642 9E-2(1.28E-1) | 1.319 0E-2(1.29E-2) | 2.572 2E-2(1.01E-1) | 4.392 8E-3(2.26E-4) |
MW10 | 2 | 5.718 9E-2(3.54E-2) | 1.196 8E-1(1.38E-1) | 2.195 4E-1(2.33E-1) | 3.271 2E-2(2.09E-2) | 1.503 7E-2(1.08E-2) |
MW11 | 2 | 6.260 0E-3(8.58E-4) | 3.755 2E-1(3.48E-1) | 8.891 5E-3(1.37E-2) | 6.116 1E-3(1.44E-4)+ | 7.367 1E-3(6.58E-3) |
MW12 | 2 | 8.644 1E-3(1.39E-2) | 7.753 7E-3(9.91E-3) | 6.771 1E-3(2.56E-3) | 1.657 7E-2(6.50E-2) | 4.786 9E-3(2.17E-4) |
MW13 | 2 | 9.898 2E-2(1.03E-1) | 2.270 6E-1(3.57E-1) | 1.218 4E-1(6.62E-2) | 7.053 4E-2(3.93E-2) | 3.744 1E-2(2.66E-2) |
MW14 | 3 | 1.254 9E-1(4.34E-3) | 4.460 4E-1(2.89E-1) | 1.418 5E-1(3.71E-2) | 1.015 6E-1(2.21E-2)+ | 1.036 3E-1(2.17E-2) |
+/方正汇总行 | 0/13/1 | 0/14/0 | 0/14/0 | 3/4/7 |
Tab. 3 Average values and standard deviations of IGD on MW test functions of five algorithms
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
MW1 | 2 | 3.416 1E-3(4.15E-3) | 1.062 5E-2(2.59E-2) | 5.741 0E-3(1.19E-2) | 3.575 8E-3(8.39E-3) | 1.620 1E-3(1.45E-5) |
MW2 | 2 | 2.323 9E-2(1.02E-2) | 2.326 0E-2(1.58E-2) | 3.972 0E-2(2.54E-2) | 2.046 9E-2(7.36E-3) | 1.504 7E-2(7.72E-3) |
MW3 | 2 | 5.394 1E-3(3.55E-4) | 6.060 2E-3(5.05E-4) | 6.696 1E-3(9.02E-4) | 4.887 8E-3(3.14E-4) | 4.753 4E-3(2.20E-4) |
MW4 | 3 | 4.189 7E-2(4.39E-4) | 5.613 4E-2(2.94E-3) | 5.501 3E-2(1.83E-3) | 4.075 1E-2(3.57E-4) | 4.101 4E-2(4.85E-4) |
MW5 | 2 | 2.890 5E-2(4.23E-2) | 3.109 4E-1(3.60E-1) | 1.794 2E-1(2.88E-1) | 1.231 7E-3(7.70E-4) | 1.590 4E-3(1.34E-3) |
MW6 | 2 | 2.869 8E-2(2.40E-2) | 3.819 3E-2(7.73E-2) | 1.065 6E-1(1.71E-1) | 5.192 0E-2(1.20E-1) | 1.210 0E-2(7.11E-3) |
MW7 | 2 | 1.731 7E-2(2.08E-2) | 6.637 4E-2(1.54E-1) | 2.627 9E-2(2.22E-2) | 4.451 3E-3(3.12E-4)+ | 5.093 3E-3(6.14E-4) |
MW8 | 3 | 5.093 5E-2(8.45E-3) | 5.812 7E-2(5.33E-3) | 7.331 7E-2(2.70E-2) | 4.865 7E-2(1.42E-2) | 4.485 7E-2(3.00E-3) |
MW9 | 2 | 2.275 6E-1(2.80E-1) | 3.642 9E-2(1.28E-1) | 1.319 0E-2(1.29E-2) | 2.572 2E-2(1.01E-1) | 4.392 8E-3(2.26E-4) |
MW10 | 2 | 5.718 9E-2(3.54E-2) | 1.196 8E-1(1.38E-1) | 2.195 4E-1(2.33E-1) | 3.271 2E-2(2.09E-2) | 1.503 7E-2(1.08E-2) |
MW11 | 2 | 6.260 0E-3(8.58E-4) | 3.755 2E-1(3.48E-1) | 8.891 5E-3(1.37E-2) | 6.116 1E-3(1.44E-4)+ | 7.367 1E-3(6.58E-3) |
MW12 | 2 | 8.644 1E-3(1.39E-2) | 7.753 7E-3(9.91E-3) | 6.771 1E-3(2.56E-3) | 1.657 7E-2(6.50E-2) | 4.786 9E-3(2.17E-4) |
MW13 | 2 | 9.898 2E-2(1.03E-1) | 2.270 6E-1(3.57E-1) | 1.218 4E-1(6.62E-2) | 7.053 4E-2(3.93E-2) | 3.744 1E-2(2.66E-2) |
MW14 | 3 | 1.254 9E-1(4.34E-3) | 4.460 4E-1(2.89E-1) | 1.418 5E-1(3.71E-2) | 1.015 6E-1(2.21E-2)+ | 1.036 3E-1(2.17E-2) |
+/方正汇总行 | 0/13/1 | 0/14/0 | 0/14/0 | 3/4/7 |
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
MW1 | 2 | 4.867 1E-1(7.68E-3) | 4.799 7E-1(2.51E-2) | 4.849 8E-1(1.38E-2) | 4.874 9E-1(9.69E-3) | 4.900 5E-1(3.41E-5) |
MW2 | 2 | 5.496 2E-1(1.56E-2) | 5.496 4E-1(2.28E-2) | 5.255 7E-1(3.50E-2) | 5.536 1E-1(1.17E-2) | 5.625 9E-1(1.29E-2) |
MW3 | 2 | 5.440 4E-1(5.94E-4) | 5.428 6E-1(8.69E-4) | 5.442 1E-1(6.20E-4) | 5.442 8E-1(5.85E-4) | 5.445 0E-1(4.43E-4) |
MW4 | 3 | 8.394 2E-1(7.16E-4) | 8.234 0E-1(3.37E-3) | 8.266 2E-1(2.09E-3) | 8.418 8E-1(3.63E-4)+ | 8.414 7E-1(7.55E-4) |
MW5 | 2 | 3.094 1E-1(1.91E-2) | 2.228 5E-1(1.10E-1) | 2.610 5E-1(8.79E-2) | 3.240 1E-1(3.07E-4) | 3.236 5E-1(9.88E-4) |
MW6 | 2 | 2.931 9E-1(2.19E-2) | 2.935 3E-1(2.57E-2) | 2.537 6E-1(6.79E-2) | 2.903 9E-1(4.78E-2) | 3.137 1E-1(1.01E-2) |
MW7 | 2 | 4.100 4E-1(3.66E-3) | 3.888 2E-1(5.75E-2) | 4.052 8E-1(9.69E-2) | 4.120 6E-1(7.12E-4) | 4.123 8E-1(4.65E-4) |
MW8 | 3 | 5.195 7E-1(2.06E-2) | 5.073 7E-1(1.79E-2) | 4.742 4E-1(5.56E-2) | 5.264 9E-1(3.19E-2) | 5.382 3E-1(1.31E-2) |
MW9 | 2 | 2.384 7E-1(1.70E-1) | 3.713 9E-1(7.10E-2) | 3.822 9E-1(1.50E-2) | 3.834 5E-1(5.45E-2) | 3.987 8E-1(1.63E-3) |
MW10 | 2 | 4.038 3E-1(2.49E-2) | 3.683 9E-1(6.93E-2) | 3.177 4E-1(1.13E-1) | 4.226 3E-1(1.85E-2) | 4.385 5E-1(1.21E-2) |
MW11 | 2 | 4.469 0E-1(2.34E-3) | 3.536 8E-1(8.80E-2) | 4.450 1E-1(4.51E-3) | 4.475 3E-1(2.21E-4) | 4.468 7E-1(2.89E-3) |
MW12 | 2 | 6.014 5E-1(9.98E-3) | 6.024 6E-1(7.04E-3) | 6.020 7E-1(4.43E-3) | 5.937 9E-1(6.18E-2) | 6.407 9E-1(4.86E-4) |
MW13 | 2 | 4.358 8E-1(3.70E-2) | 4.053 4E-1(6.59E-2) | 4.154 3E-1(4.32E-2) | 4.442 6E-1(2.05E-2) | 4.614 2E-1(1.22E-2) |
MW14 | 3 | 4.653 8E-1(2.92E-3) | 2.951 5E-1(1.39E-1) | 4.540 0E-1(7.05E-3) | 4.720 0E-1(4.55E-3) | 4.664 2E-1(4.64E-3) |
+/方正汇总行 | 0/11/3 | 0/14/0 | 0/13/1 | 1/3/10 |
Tab. 4 Average values and standard deviations of HV on MW test functions of five algorithms
问题 | M | CMOEA-MS | ToP | PPS | MSCMO | TSDRA |
---|---|---|---|---|---|---|
MW1 | 2 | 4.867 1E-1(7.68E-3) | 4.799 7E-1(2.51E-2) | 4.849 8E-1(1.38E-2) | 4.874 9E-1(9.69E-3) | 4.900 5E-1(3.41E-5) |
MW2 | 2 | 5.496 2E-1(1.56E-2) | 5.496 4E-1(2.28E-2) | 5.255 7E-1(3.50E-2) | 5.536 1E-1(1.17E-2) | 5.625 9E-1(1.29E-2) |
MW3 | 2 | 5.440 4E-1(5.94E-4) | 5.428 6E-1(8.69E-4) | 5.442 1E-1(6.20E-4) | 5.442 8E-1(5.85E-4) | 5.445 0E-1(4.43E-4) |
MW4 | 3 | 8.394 2E-1(7.16E-4) | 8.234 0E-1(3.37E-3) | 8.266 2E-1(2.09E-3) | 8.418 8E-1(3.63E-4)+ | 8.414 7E-1(7.55E-4) |
MW5 | 2 | 3.094 1E-1(1.91E-2) | 2.228 5E-1(1.10E-1) | 2.610 5E-1(8.79E-2) | 3.240 1E-1(3.07E-4) | 3.236 5E-1(9.88E-4) |
MW6 | 2 | 2.931 9E-1(2.19E-2) | 2.935 3E-1(2.57E-2) | 2.537 6E-1(6.79E-2) | 2.903 9E-1(4.78E-2) | 3.137 1E-1(1.01E-2) |
MW7 | 2 | 4.100 4E-1(3.66E-3) | 3.888 2E-1(5.75E-2) | 4.052 8E-1(9.69E-2) | 4.120 6E-1(7.12E-4) | 4.123 8E-1(4.65E-4) |
MW8 | 3 | 5.195 7E-1(2.06E-2) | 5.073 7E-1(1.79E-2) | 4.742 4E-1(5.56E-2) | 5.264 9E-1(3.19E-2) | 5.382 3E-1(1.31E-2) |
MW9 | 2 | 2.384 7E-1(1.70E-1) | 3.713 9E-1(7.10E-2) | 3.822 9E-1(1.50E-2) | 3.834 5E-1(5.45E-2) | 3.987 8E-1(1.63E-3) |
MW10 | 2 | 4.038 3E-1(2.49E-2) | 3.683 9E-1(6.93E-2) | 3.177 4E-1(1.13E-1) | 4.226 3E-1(1.85E-2) | 4.385 5E-1(1.21E-2) |
MW11 | 2 | 4.469 0E-1(2.34E-3) | 3.536 8E-1(8.80E-2) | 4.450 1E-1(4.51E-3) | 4.475 3E-1(2.21E-4) | 4.468 7E-1(2.89E-3) |
MW12 | 2 | 6.014 5E-1(9.98E-3) | 6.024 6E-1(7.04E-3) | 6.020 7E-1(4.43E-3) | 5.937 9E-1(6.18E-2) | 6.407 9E-1(4.86E-4) |
MW13 | 2 | 4.358 8E-1(3.70E-2) | 4.053 4E-1(6.59E-2) | 4.154 3E-1(4.32E-2) | 4.442 6E-1(2.05E-2) | 4.614 2E-1(1.22E-2) |
MW14 | 3 | 4.653 8E-1(2.92E-3) | 2.951 5E-1(1.39E-1) | 4.540 0E-1(7.05E-3) | 4.720 0E-1(4.55E-3) | 4.664 2E-1(4.64E-3) |
+/方正汇总行 | 0/11/3 | 0/14/0 | 0/13/1 | 1/3/10 |
问题 | M | TSDRAv1 | TSDRAv2 | TSDRA |
---|---|---|---|---|
LIRCMOP1 | 2 | 1.234 4E-2(2.28E-3) | 1.131 4E-1(4.59E-2) | 7.9746E-3(1.38E-3) |
LIRCMOP2 | 2 | 8.783 1E-3(7.38E-4) | 5.820 7E-2(5.98E-2) | 5.0709E-3(2.25E-4) |
LIRCMOP3 | 2 | 8.495 6E-3(2.68E-3) | 1.512 6E-1(9.11E-2) | 3.2908E-3(5.32E-4) |
LIRCMOP4 | 2 | 7.162 0E-3(6.46E-4) | 1.250 3E-1(1.11E-1) | 2.9301E-3(2.44E-4) |
LIRCMOP5 | 2 | 9.347 4E-3(1.61E-3) | 8.048 0E-3(2.19E-3) | 7.7091E-3(4.11E-3) |
LIRCMOP6 | 2 | 2.012 6E-2(6.63E-2) | 5.161 7E-2(1.19E-1) | 5.6583E-3(2.39E-4) |
LIRCMOP7 | 2 | 7.953 5E-3(5.29E-4) | 1.268 9E-2(2.42E-2) | 7.2306E-3(3.16E-4) |
LIRCMOP8 | 2 | 2.236 3E-2(8.04E-2) | 7.389 5E-3(3.99E-4) | 7.2472E-3(4.14E-4) |
LIRCMOP9 | 2 | 1.0524E-1(1.23E-1) | 4.811 5E-1(7.11E-2) | 1.335 3E-1(1.70E-1) |
LIRCMOP10 | 2 | 1.403 6E-2(2.60E-3)- | 6.444 1E-2(8.34E-2) | 9.3422E-3(2.02E-3) |
LIRCMOP11 | 2 | 9.461 5E-3(1.39E-2)- | 9.925 6E-2(7.37E-2) | 5.1255E-3(8.51E-4) |
LIRCMOP12 | 2 | 4.449 2E-2(5.40E-2)- | 2.961 7E-1(9.96E-2) | 3.2965E-2(5.61E-2) |
LIRCMOP13 | 3 | 1.180 5E-1(1.43E-3)- | 1.0800E-1(3.35E-3) | 1.085 3E-1(1.93E-3) |
LIRCMOP14 | 3 | 1.018 8E-1(1.50E-3) | 9.897 6E-2(2.18E-3) | 9.8775E-2(1.40E-3) |
+/方正汇总行 | 0/12/2 | 0/9/5 |
Tab. 5 Average value and standard deviation of IGD on LIRCMOP test function of TSDRA and its variants
问题 | M | TSDRAv1 | TSDRAv2 | TSDRA |
---|---|---|---|---|
LIRCMOP1 | 2 | 1.234 4E-2(2.28E-3) | 1.131 4E-1(4.59E-2) | 7.9746E-3(1.38E-3) |
LIRCMOP2 | 2 | 8.783 1E-3(7.38E-4) | 5.820 7E-2(5.98E-2) | 5.0709E-3(2.25E-4) |
LIRCMOP3 | 2 | 8.495 6E-3(2.68E-3) | 1.512 6E-1(9.11E-2) | 3.2908E-3(5.32E-4) |
LIRCMOP4 | 2 | 7.162 0E-3(6.46E-4) | 1.250 3E-1(1.11E-1) | 2.9301E-3(2.44E-4) |
LIRCMOP5 | 2 | 9.347 4E-3(1.61E-3) | 8.048 0E-3(2.19E-3) | 7.7091E-3(4.11E-3) |
LIRCMOP6 | 2 | 2.012 6E-2(6.63E-2) | 5.161 7E-2(1.19E-1) | 5.6583E-3(2.39E-4) |
LIRCMOP7 | 2 | 7.953 5E-3(5.29E-4) | 1.268 9E-2(2.42E-2) | 7.2306E-3(3.16E-4) |
LIRCMOP8 | 2 | 2.236 3E-2(8.04E-2) | 7.389 5E-3(3.99E-4) | 7.2472E-3(4.14E-4) |
LIRCMOP9 | 2 | 1.0524E-1(1.23E-1) | 4.811 5E-1(7.11E-2) | 1.335 3E-1(1.70E-1) |
LIRCMOP10 | 2 | 1.403 6E-2(2.60E-3)- | 6.444 1E-2(8.34E-2) | 9.3422E-3(2.02E-3) |
LIRCMOP11 | 2 | 9.461 5E-3(1.39E-2)- | 9.925 6E-2(7.37E-2) | 5.1255E-3(8.51E-4) |
LIRCMOP12 | 2 | 4.449 2E-2(5.40E-2)- | 2.961 7E-1(9.96E-2) | 3.2965E-2(5.61E-2) |
LIRCMOP13 | 3 | 1.180 5E-1(1.43E-3)- | 1.0800E-1(3.35E-3) | 1.085 3E-1(1.93E-3) |
LIRCMOP14 | 3 | 1.018 8E-1(1.50E-3) | 9.897 6E-2(2.18E-3) | 9.8775E-2(1.40E-3) |
+/方正汇总行 | 0/12/2 | 0/9/5 |
问题 | M | TSDRAv1 | TSDRAv2 | TSDRA |
---|---|---|---|---|
LIRCMOP1 | 2 | 2.347 1E-1(8.72E-4) | 1.784 9E-1(2.16E-2) | 2.3717E-1(2.46E-4) |
LIRCMOP2 | 2 | 3.577 6E-1(4.42E-4) | 3.334 5E-1(2.54E-2) | 3.5993E-1(1.87E-4) |
LIRCMOP3 | 2 | 2.044 0E-1(1.87E-3) | 1.529 5E-1(2.70E-2) | 2.0746E-1(4.77E-4) |
LIRCMOP4 | 2 | 3.139 6E-1(6.42E-4) | 2.703 1E-1(3.95E-2) | 3.1653E-1(3.57E-4) |
LIRCMOP5 | 2 | 2.896 0E-1(1.09E-3) | 2.9004 E-1(1.54E-3) | 2.9054E-1(5.66E-4) |
LIRCMOP6 | 2 | 1.914 4E-1(2.31E-2) | 1.805 2E-1(4.05E-2) | 1.9637E-1(2.02E-4) |
LIRCMOP7 | 2 | 2.940 2E-1(3.76E-4) | 2.923 1E-1(8.96E-3) | 2.9449E-1(1.38E-4) |
LIRCMOP8 | 2 | 2.915 4E-1(1.41E-2) | 2.9438 E-1(2.86E-4) | 2.9441E-1(2.32E-4) |
LIRCMOP9 | 2 | 5.2473E-1(5.26E-2) | 3.621 9E-1(2.12E-2) | 5.086 2E-1(7.17E-2) |
LIRCMOP10 | 2 | 7.003 7E-1(1.50E-3)- | 6.789 6E-1(3.88E-2) | 7.0411E-1(1.22E-3) |
LIRCMOP11 | 2 | 6.893 9E-1(7.91E-3)- | 6.391 1E-1(4.09E-2) | 6.9240E-1(5.70E-4) |
LIRCMOP12 | 2 | 5.996 2E-1(2.89E-2)- | 4.598 5E-1(6.31E-2) | 6.0511E-1(3.02E-2) |
LIRCMOP13 | 3 | 5.141 4E-1(3.41E-3)- | 5.2723E-1(3.22E-3)+ | 5.256 3E-1(3.00E-3) |
LIRCMOP14 | 3 | 5.434 2E-1(1.47E-3)- | 5.4784E-2(3.34E-3) | 5.474 4E-1(1.88E-3) |
+/方正汇总行 | 0/13/1 | 1/10/3 |
Tab. 6 Average value and standard deviation of HV on LIRCMOP test function of TSDRA and its variants
问题 | M | TSDRAv1 | TSDRAv2 | TSDRA |
---|---|---|---|---|
LIRCMOP1 | 2 | 2.347 1E-1(8.72E-4) | 1.784 9E-1(2.16E-2) | 2.3717E-1(2.46E-4) |
LIRCMOP2 | 2 | 3.577 6E-1(4.42E-4) | 3.334 5E-1(2.54E-2) | 3.5993E-1(1.87E-4) |
LIRCMOP3 | 2 | 2.044 0E-1(1.87E-3) | 1.529 5E-1(2.70E-2) | 2.0746E-1(4.77E-4) |
LIRCMOP4 | 2 | 3.139 6E-1(6.42E-4) | 2.703 1E-1(3.95E-2) | 3.1653E-1(3.57E-4) |
LIRCMOP5 | 2 | 2.896 0E-1(1.09E-3) | 2.9004 E-1(1.54E-3) | 2.9054E-1(5.66E-4) |
LIRCMOP6 | 2 | 1.914 4E-1(2.31E-2) | 1.805 2E-1(4.05E-2) | 1.9637E-1(2.02E-4) |
LIRCMOP7 | 2 | 2.940 2E-1(3.76E-4) | 2.923 1E-1(8.96E-3) | 2.9449E-1(1.38E-4) |
LIRCMOP8 | 2 | 2.915 4E-1(1.41E-2) | 2.9438 E-1(2.86E-4) | 2.9441E-1(2.32E-4) |
LIRCMOP9 | 2 | 5.2473E-1(5.26E-2) | 3.621 9E-1(2.12E-2) | 5.086 2E-1(7.17E-2) |
LIRCMOP10 | 2 | 7.003 7E-1(1.50E-3)- | 6.789 6E-1(3.88E-2) | 7.0411E-1(1.22E-3) |
LIRCMOP11 | 2 | 6.893 9E-1(7.91E-3)- | 6.391 1E-1(4.09E-2) | 6.9240E-1(5.70E-4) |
LIRCMOP12 | 2 | 5.996 2E-1(2.89E-2)- | 4.598 5E-1(6.31E-2) | 6.0511E-1(3.02E-2) |
LIRCMOP13 | 3 | 5.141 4E-1(3.41E-3)- | 5.2723E-1(3.22E-3)+ | 5.256 3E-1(3.00E-3) |
LIRCMOP14 | 3 | 5.434 2E-1(1.47E-3)- | 5.4784E-2(3.34E-3) | 5.474 4E-1(1.88E-3) |
+/方正汇总行 | 0/13/1 | 1/10/3 |
1 | ZHOU H, QIAO J. Multi-objective optimal control for wastewater treatment process using adaptive MOEA/D [J]. Applied Intelligence, 2019, 49: 1098-1126. 10.1007/s10489-018-1319-7 |
2 | 鲁宇明,张祥飞,黎明,等.基于约束多目标优化算法的夹具定位方案稳健性优化设计[J].兵工学报, 2022, 43(3): 686-693. |
LU Y M, ZHANG X F, LI M, et al. Robust optimization design of fixture locating scheme based on constrained multi-objective optimization algorithm [J]. Acta Armamentarii, 2022, 43(3): 686-693. | |
3 | SORKHABI S Y D, ROMERO D A, BECK J C, et al. Constrained multi-objective wind farm layout optimization: novel constraint handling approach based on constraint programming [J]. Renewable Energy, 2018, 126: 341-353. 10.1016/j.renene.2018.03.053 |
4 | TESSEMA B, YEN G G. An adaptive penalty formulation for constrained evolutionary optimization [J]. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 2009, 39(3): 565-578. 10.1109/tsmca.2009.2013333 |
5 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
6 | ABRAHAM A, DOTE Y, FURUHASHI T, et al. Soft Computing as Transdisciplinary Science and Technology [M]. Berlin: Springer, 2005: 1019-1029. 10.1007/3-540-32391-0 |
7 | RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization [J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3): 284-294. 10.1109/4235.873238 |
8 | FAN Z, LI W, CAI X, et al. Push and pull search for solving constrained multi-objective optimization problems [J]. Swarm and Evolutionary Computation, 2019, 44: 665-679. 10.1016/j.swevo.2018.08.017 |
9 | LIU Z-Z, WANG Y. Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces [J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 870-884. 10.1109/tevc.2019.2894743 |
10 | TIAN Y, ZHANG Y, SU Y, et al. Balancing objective optimization and constraint satisfaction in constrained evolutionary multi-objective optimization [J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9559-9572. 10.1109/tcyb.2020.3021138 |
11 | MA H, WEI H, TIAN Y, et al. A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints [J]. Information Sciences, 2021, 560: 68-91. 10.1016/j.ins.2021.01.029 |
12 | LI K, CHEN R, FU G, et al. Two-archive evolutionary algorithm for constrained multi-objective optimization [J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 303-315. 10.1109/tevc.2018.2855411 |
13 | TIAN Y, ZHANG T, XIAO J, et al. A coevolutionary framework for constrained multi-objective optimization problems [J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 102-116. 10.1109/tevc.2020.3004012 |
14 | ZOU J, SUN R, YANG S, et al. A dual-population algorithm based on alternative evolution and degeneration for solving constrained multi-objective optimization problems [J]. Information Sciences, 2021, 579:89-102. 10.1016/j.ins.2021.07.078 |
15 | LIU Z-Z, WANG B-C, TANG K. Handling constrained multiobjective optimization problems via bidirectional coevolution [J]. IEEE Transactions on Cybernetics, 2022, 52(10): 10163-10176. 10.1109/tcyb.2021.3056176 |
16 | MING F, GONG W, ZHEN H, et al. A simple two-stage evolutionary algorithm for constrained multi-objective optimization [J]. Knowledge-Based Systems, 2021, 228: 107263. 10.1016/j.knosys.2021.107263 |
17 | FAN C, WANG J, XIAO L, et al. A coevolution algorithm based on two-staged strategy for constrained multi-objective problems [J]. Applied Intelligence, 2022, 52: 17954-17973. 10.1007/s10489-022-03421-7 |
18 | WANG Y, LIU Y, ZOU J, et al. A novel two-phase evolutionary algorithm for solving constrained multi-objective optimization problems [J]. Swarm and Evolutionary Computation, 2022, 75: 101166. 10.1016/j.swevo.2022.101166 |
19 | MA Z, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons [J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986. 10.1109/tevc.2019.2896967 |
20 | ZITZLER E, LAUMANNS M, THIELE L. SPEA2: Improving the strength Pareto evolutionary algorithm [J/OL]. TIK Report, 2001, 103: 1-21[2023-01-05]. . |
21 | TIAN Y, CHENG R, ZHANG X, et al. PlatEMO: A Matlab platform for evolutionary multi-objective optimization [educational forum] [J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. 10.1109/mci.2017.2742868 |
22 | FAN Z, LI W, CAI X, et al. An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions [J]. Soft Computing, 2019, 23: 12491-12510. 10.1007/s00500-019-03794-x |
23 | BOSMAN P A N, THIERENS D. The balance between proximity and diversity in multiobjective evolutionary algorithms [J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 174-188. 10.1109/tevc.2003.810761 |
24 | ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach [J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271. 10.1109/4235.797969 |
[1] | Yun OU, Kaiqing ZHOU, Pengfei YIN, Xuewei LIU. Improved grey wolf optimizer algorithm based on dual convergence factor strategy [J]. Journal of Computer Applications, 2023, 43(9): 2679-2685. |
[2] | Saijuan XU, Zhenyu PEI, Jiawei LIN, Genggeng LIU. Constrained multi-objective evolutionary algorithm based on multi-stage search [J]. Journal of Computer Applications, 2023, 43(8): 2345-2351. |
[3] | Ming DU, Wanli GU, Junfeng ZHOU, Zhijun WANG. Community search method based on motif connectivity [J]. Journal of Computer Applications, 2023, 43(7): 2190-2199. |
[4] | Lei LI, Guofu ZHANG, Zhaopin SU, Feng YUE. Software testing resource allocation algorithm for dynamic changes in architecture [J]. Journal of Computer Applications, 2023, 43(7): 2261-2270. |
[5] | Bin WANG, Tian XIANG, Yidong LYU, Xiaofan WANG. Adaptive multi-scale feature channel grouping optimization algorithm based on NSGA‑Ⅱ [J]. Journal of Computer Applications, 2023, 43(5): 1401-1408. |
[6] | Lin HUANG, Qiang FU, Nan TONG. Solving robot path planning problem by adaptively adjusted Harris hawk optimization algorithm [J]. Journal of Computer Applications, 2023, 43(12): 3840-3847. |
[7] | Hairong XUE, Xiaolong HAN. Integrated scheduling considering automated guided vehicle charging strategy based on improved NSGA-Ⅱ [J]. Journal of Computer Applications, 2023, 43(12): 3848-3855. |
[8] | Erchao LI, Shenghui ZHANG. Dynamic multi-objective optimization algorithm based on adaptive prediction of new evaluation index [J]. Journal of Computer Applications, 2023, 43(10): 3178-3187. |
[9] | Jieqin WANG, Shihyang LIN, Shiming PENG, Shuo JIA, Miaohui YANG. Hierarchical resource allocation mechanism of cooperative mobile edge computing [J]. Journal of Computer Applications, 2022, 42(8): 2501-2510. |
[10] | Linxiu SHA, Fan NIE, Qian GAO, Hao MENG. Alternately optimizing algorithm based on Brownian movement and gradient information [J]. Journal of Computer Applications, 2022, 42(7): 2139-2145. |
[11] | Qingqing NIE, Dingsheng WAN, Yuelong ZHU, Zhijia LI, Cheng YAO. Hydrological model based on temporal convolutional network [J]. Journal of Computer Applications, 2022, 42(6): 1756-1761. |
[12] | Xiao QIN, Miao CHENG, Shaobing ZHANG, Lian HE, Xiangwen SHI, Pinxue WANG, Shang ZENG. Pruning of YOLOv4 based on rank information in industrial scenes [J]. Journal of Computer Applications, 2022, 42(5): 1417-1423. |
[13] | Yu LI, Xiping HE, Lianggui TANG. Multi-user computation offloading and resource optimization policy based on device-to-device communication [J]. Journal of Computer Applications, 2022, 42(5): 1538-1546. |
[14] | Junjie ZHANG, Runhe QIU. Joint optimization of user association and resource allocation in cognitive radio ultra-dense networks to improve genetic algorithm [J]. Journal of Computer Applications, 2022, 42(12): 3856-3862. |
[15] | Jialiang HAN, Yudong HAN, Xuanzhe LIU, Yaoshuai ZHAO, Di FENG. Personalized recommendation service system based on cloud-client-convergence [J]. Journal of Computer Applications, 2022, 42(11): 3506-3512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||