Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3242-3250.DOI: 10.11772/j.issn.1001-9081.2021020327
• Artificial intelligence • Previous Articles Next Articles
Received:
2021-03-05
Revised:
2021-04-15
Accepted:
2021-04-20
Online:
2021-04-29
Published:
2021-11-10
Contact:
Yuan ZHU
About author:
GAO Jie,born in 1996,M. S. candidate. Her research interests
include multi-sensor fusion,multi-object tracking,object detection通讯作者:
朱元
作者简介:
高洁(1996—),女,贵州六盘水人,硕士研究生,主要研究方向:多传感器融合、多目标跟踪、目标检测CLC Number:
Jie GAO, Yuan ZHU, Ke LU. Object detection method based on radar and camera fusion[J]. Journal of Computer Applications, 2021, 41(11): 3242-3250.
高洁, 朱元, 陆科. 基于雷达和相机融合的目标检测方法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3242-3250.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020327
层级名称 | 层级结构 | Stride |
---|---|---|
conv1 | 7×7, 64 | 2 |
conv2_x | 3×3 max pool, | 2 |
1 | ||
conv3_x | 1 | |
conv4_x | 1 | |
conv5_x | 1 |
Tab. 1 Structural parameters of ResNet50
层级名称 | 层级结构 | Stride |
---|---|---|
conv1 | 7×7, 64 | 2 |
conv2_x | 3×3 max pool, | 2 |
1 | ||
conv3_x | 1 | |
conv4_x | 1 | |
conv5_x | 1 |
层级名称 | 输入尺寸 | 输出尺寸 |
---|---|---|
fc1 | 12 544 | 1 024 |
fc2 | 1 024 | 1 024 |
fc3(Bbox_Pred) | 1 024 | 24 |
fc4(Class_Prob) | 1 024 | 7 |
Tab. 2 Parameters of fully connected layer
层级名称 | 输入尺寸 | 输出尺寸 |
---|---|---|
fc1 | 12 544 | 1 024 |
fc2 | 1 024 | 1 024 |
fc3(Bbox_Pred) | 1 024 | 24 |
fc4(Class_Prob) | 1 024 | 7 |
指标 | 含义 |
---|---|
AP | 平均准确度,检测结果中正确结果所占比例 |
AP50 | IoU = 0.50的检测结果的AP |
AP75 | IoU = 0.75的检测结果的AP |
APS | 面积 |
APM | 322 < 面积 < 962的中等目标的AP |
APL | 面积 |
AR | 平均召回率,测试集中所有正样本样例中被正确检测的比例 |
AR10 | 测试集每张图像中每10个目标中的最大召回的平均值 |
AR100 | 测试集每张图像中每100个目标中的最大召回的平均值 |
ARS | 面积 |
ARM | 322 < 面积 < 962的中等目标的AR |
ARL | 面积 |
Tab. 1 Evaluation indexes for experiment and their meanings
指标 | 含义 |
---|---|
AP | 平均准确度,检测结果中正确结果所占比例 |
AP50 | IoU = 0.50的检测结果的AP |
AP75 | IoU = 0.75的检测结果的AP |
APS | 面积 |
APM | 322 < 面积 < 962的中等目标的AP |
APL | 面积 |
AR | 平均召回率,测试集中所有正样本样例中被正确检测的比例 |
AR10 | 测试集每张图像中每10个目标中的最大召回的平均值 |
AR100 | 测试集每张图像中每100个目标中的最大召回的平均值 |
ARS | 面积 |
ARM | 322 < 面积 < 962的中等目标的AR |
ARL | 面积 |
候选框生成方法 | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|
PRRPN | 34.49 | 60.95 | 35.05 | 7.75 | 24.03 | 46.28 |
RPN | 36.69 | 66.99 | 36.72 | 5.66 | 28.76 | 47.74 |
PRRPN+RPN | 37.03 | 64.90 | 38.54 | 5.90 | 29.17 | 47.68 |
Tab. 2 APs of different detection methods
候选框生成方法 | AP | AP50 | AP75 | APS | APM | APL |
---|---|---|---|---|---|---|
PRRPN | 34.49 | 60.95 | 35.05 | 7.75 | 24.03 | 46.28 |
RPN | 36.69 | 66.99 | 36.72 | 5.66 | 28.76 | 47.74 |
PRRPN+RPN | 37.03 | 64.90 | 38.54 | 5.90 | 29.17 | 47.68 |
候选框生成方法 | AR | AR10 | AR100 | ARS | ARM | ARL |
---|---|---|---|---|---|---|
PRRPN | 0.268 | 0.428 | 0.433 | 0.101 | 0.335 | 0.543 |
RPN | 0.290 | 0.476 | 0.488 | 0.242 | 0.433 | 0.569 |
PRRPN+RPN | 0.292 | 0.478 | 0.490 | 0.249 | 0.435 | 0.568 |
Tab. 3 ARs of different detection methods
候选框生成方法 | AR | AR10 | AR100 | ARS | ARM | ARL |
---|---|---|---|---|---|---|
PRRPN | 0.268 | 0.428 | 0.433 | 0.101 | 0.335 | 0.543 |
RPN | 0.290 | 0.476 | 0.488 | 0.242 | 0.433 | 0.569 |
PRRPN+RPN | 0.292 | 0.478 | 0.490 | 0.249 | 0.435 | 0.568 |
候选框 生成方法 | 人 | 自行车 | 小汽车 | 摩托车 | 公共汽车 | 卡车 |
---|---|---|---|---|---|---|
PRRPN | 13.51 | 24.38 | 45.85 | 24.19 | 60.94 | 38.08 |
RPN | 19.33 | 25.65 | 50.05 | 18.07 | 66.16 | 40.89 |
PRRPN + RPN | 18.88 | 26.10 | 50.19 | 19.36 | 66.59 | 41.08 |
Tab. 4 APs of different detection methods for different classes
候选框 生成方法 | 人 | 自行车 | 小汽车 | 摩托车 | 公共汽车 | 卡车 |
---|---|---|---|---|---|---|
PRRPN | 13.51 | 24.38 | 45.85 | 24.19 | 60.94 | 38.08 |
RPN | 19.33 | 25.65 | 50.05 | 18.07 | 66.16 | 40.89 |
PRRPN + RPN | 18.88 | 26.10 | 50.19 | 19.36 | 66.59 | 41.08 |
1 | SOVIANY P, IONESCU R T. Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction [C]// Proceedings of the 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. Piscataway: IEEE, 2018: 209-214. 10.1109/synasc.2018.00041 |
2 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788. 10.1109/cvpr.2016.91 |
3 | WEI L, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9905. Cham: Springer, 2016: 21-37. |
4 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. 10.1109/cvpr.2017.690 |
5 | REDMON J, FARHADI A. YOLOv3: an incremental improvement [EB/OL]. (2018-04-08) [2020-12-04].. 10.1109/cvpr.2018.00430 |
6 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 10.1109/cvpr.2014.81 |
7 | GIRSHICK R. Fast R-CNN [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. 10.1109/iccv.2015.169 |
8 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]// Proceedings of the 2015 28th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2015:91-99. |
9 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. 10.1109/iccv.2017.322 |
10 | CAESAR H, BANKITI V, LANG A H, et al. nuScenes: a multimodal dataset for autonomous driving [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11618-11628. 10.1109/cvpr42600.2020.01164 |
11 | ZHANG R Y, CAO S Y. Extending reliability of mmwave radar tracking and detection via fusion with camera [J]. IEEE Access, 2019, 7: 137065-137079. 10.1109/access.2019.2942382 |
12 | KIM T L, LEE J S, PARK T H, et al. Fusing lidar, radar, and camera using extended Kalman filter for estimating the forward position of vehicles [C]// Proceedings of the 2019 IEEE International Conference on Cybernetics and Intelligent Systems/ IEEE Conference on Robotics, Automation and Mechatronics. Piscataway: IEEE, 2019: 374-379. 10.1109/cis-ram47153.2019.9095859 |
13 | KIM K E, LEE C J, PAE D S, et al. Sensor fusion for vehicle tracking with camera and radar sensor [C]// Proceedings of the 2017 17th International Conference on Control, Automation and Systems. Piscataway: IEEE, 2017: 1075-1077. 10.23919/iccas.2017.8204375 |
14 | JANG Y S, PARK S K, LIM M T. Sensor fusion and compensation algorithm for vehicle tracking with front camera and corner radar sensors [C]// Proceedings of the 2019 19th International Conference on Control, Automation and Systems. Piscataway: IEEE, 2019: 575-578. 10.23919/iccas47443.2019.8971685 |
15 | JIANG Q Y, ZHANG L J, MENG D J. Target detection algorithm based on MMW radar and camera fusion [C]// Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2019: 1-6. 10.1109/itsc.2019.8917504 |
16 | REN J X, WANG Y, HAN Y B, et al. Information fusion of digital camera and radar [C]// Proceedings of the 2019 IEEE MTT-S International Microwave Biomedical Conference. Piscataway: IEEE, 2019: 1-4. 10.1109/imbioc.2019.8777799 |
17 | JHA H, LODHI V, CHAKRAVARTY D. Object detection and identification using vision and radar data fusion system for ground-based navigation [C]// Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks. Piscataway: IEEE, 2019: 590-593. 10.1109/spin.2019.8711717 |
18 | LEKIC V, BABIC Z. Automotive radar and camera fusion using generative adversarial networks [J]. Computer Vision and Image Understanding, 2019, 184: 1-8. 10.1016/j.cviu.2019.04.002 |
19 | NOBIS F, GEISSLINGER M, WEBER M, et al. A deep learning-based radar and camera sensor fusion architecture for object detection [C]// Proceedings of the 2019 Sensor Data Fusion: Trends, Solutions, Applications. Piscataway: IEEE, 2019: 39-45. 10.1109/sdf.2019.8916629 |
20 | CHADWICK S, MADDERN W, NEWMAN P. Distant vehicle detection using radar and vision [C]// Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 8311-8317. 10.1109/icra.2019.8794312 |
21 | MEYER M, KUSCHK G. Deep learning based 3D object detection for automotive radar and camera [C]// Proceedings of the 2019 16th European Radar Conference. Piscataway: IEEE, 2019:133-136. |
22 | JI Z P, PROKHOROV D. Radar-vision fusion for object classification [C]// Proceedings of the 2008 11th International Conference on Information Fusion. Piscataway: IEEE, 2008: 1-7. |
23 | KOCIĆ J, JOVIČIĆ N, DRNDAREVIĆ V. Sensors and sensor fusion in autonomous vehicles [C]// Proceedings of the 2018 26th Telecommunications Forum. Piscataway: IEEE, 2018: 420-425. 10.1109/telfor.2018.8612054 |
24 | HAN S Y, WANG X, XU L H, et al. Frontal object perception for intelligent vehicles based on radar and camera fusion [C]// Proceedings of the 2016 35th Chinese Control Conference. Piscataway: IEEE, 2016: 4003-4008. 10.1109/chicc.2016.7553978 |
25 | ZHANG X Y, ZHOU M, QIU P, et al. Radar and vision fusion for the real-time obstacle detection and identification [J]. Industrial Robot, 2019, 46(3): 391-395. 10.1108/ir-06-2018-0113 |
26 | CHAVEZ-GARCIA R O, AYCARD O. Multiple sensor fusion and classification for moving object detection and tracking [J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2): 525-534. 10.1109/tits.2015.2479925 |
27 | BAIG Q, AYCARD O, VU T D, et al. Fusion between laser and stereo vision data for moving objects tracking in intersection like scenario [C]// Proceedings of the 2011 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2011: 362-367. 10.1109/ivs.2011.5940576 |
28 | BAR-SHALOM Y, TSE E. Tracking in a cluttered environment with probabilistic data association [J]. Automatica, 1975, 11(5): 451-460. 10.1016/0005-1098(75)90021-7 |
29 | BAR-SHALOM Y, DAUM F, HUANG J. The probabilistic data association filter [J]. IEEE Control Systems Magazine, 2009, 29(6): 82-100. 10.1109/mcs.2009.934469 |
30 | NABATI R, QI H R. RRPN: radar region proposal network for object detection in autonomous vehicles [C]// Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 3093-3097. 10.1109/icip.2019.8803392 |
31 | WU Y X, KIRILLOV A, MASSA F, et al. Detectron2 [EB/OL]. [2019-11-09]. . |
32 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS8693. Cham: Springer, 2014: 740-755. |
33 | 罗俊海,王章静.多源数据融合和传感器管理[M].北京:清华大学出版社,2015:6-11. 10.1002/ecs2.2015.6.issue-11 |
LUO J H, WANG Z J. Multi-source Data Fusion and Sensor Management [M]. Beijing: Tsinghua University Press, 2015: 6-11. 10.1002/ecs2.2015.6.issue-11 | |
34 | 何友,修建娟,关欣.雷达数据处理及应用[M].3版.北京:电子工业出版社,2013:87-90. |
HE Y, XIU J J, GUAN X. Radar Data Processing with Applications [M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2013: 87-90. |
[1] | MA Jialiang, CHEN Bin, SUN Xiaofei. General object detection framework based on improved Faster R-CNN [J]. Journal of Computer Applications, 2021, 41(9): 2712-2719. |
[2] | LIU Zichen, LI Xiaojuan, WEI Wei. Automatic patent price evaluation based on recurrent neural network [J]. Journal of Computer Applications, 2021, 41(9): 2532-2538. |
[3] | SONG Zhongshan, LIANG Jiarui, ZHENG Lu, LIU Zhenyu, TIE Jun. Remote sensing scene classification based on bidirectional gated scale feature fusion [J]. Journal of Computer Applications, 2021, 41(9): 2726-2735. |
[4] | LI Kangkang, ZHANG Jing. Multi-layer encoding and decoding model for image captioning based on attention mechanism [J]. Journal of Computer Applications, 2021, 41(9): 2504-2509. |
[5] | ZHANG Yongbin, CHANG Wenxin, SUN Lianshan, ZHANG Hang. Detection method of domains generated by dictionary-based domain generation algorithm [J]. Journal of Computer Applications, 2021, 41(9): 2609-2614. |
[6] | ZHAO Hong, KONG Dongyi. Chinese description of image content based on fusion of image feature attention and adaptive attention [J]. Journal of Computer Applications, 2021, 41(9): 2496-2503. |
[7] | XU Jianglang, LI Linyan, WAN Xinjun, HU Fuyuan. Indoor scene recognition method combined with object detection [J]. Journal of Computer Applications, 2021, 41(9): 2720-2725. |
[8] | MOU Changning, WANG Haipeng, ZHOU Piyu, HOU Xinhang. De novo peptide sequencing by tandem mass spectrometry based on graph convolutional neural network [J]. Journal of Computer Applications, 2021, 41(9): 2773-2779. |
[9] | WANG Hebing, ZHANG Chunmei. Facial landmark detection based on ResNeXt with asymmetric convolution and squeeze excitation [J]. Journal of Computer Applications, 2021, 41(9): 2741-2747. |
[10] | ZENG Xiangyin, ZHENG Bochuan, LIU Dan. Detection of left and right railway tracks based on deep convolutional neural network and clustering [J]. Journal of Computer Applications, 2021, 41(8): 2324-2329. |
[11] | FAN Wei, LI Chenxuan, XING Yan, HUANG Rui, PENG Hongjian. Binary classification to multiple classification progressive detection network for aero-engine damage images [J]. Journal of Computer Applications, 2021, 41(8): 2352-2357. |
[12] | CAO Yuhong, XU Hai, LIU Sun'ao, WANG Zixiao, LI Hongliang. Review of deep learning-based medical image segmentation [J]. Journal of Computer Applications, 2021, 41(8): 2273-2287. |
[13] | DING Yin, SANG Nan, LI Xiaoyu, WU Feizhou. Prediction method of capacity data in telecom industry based on recurrent neural network [J]. Journal of Computer Applications, 2021, 41(8): 2373-2378. |
[14] | QIN Binbin, PENG Liangkang, LU Xiangming, QIAN Jiangbo. Research progress on driver distracted driving detection [J]. Journal of Computer Applications, 2021, 41(8): 2330-2337. |
[15] | HUANG Chengcheng, DONG Xiaoxiao, LI Zhao. Deep pipeline 5×5 convolution method based on two-dimensional Winograd algorithm [J]. Journal of Computer Applications, 2021, 41(8): 2258-2264. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||