Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 542-549.DOI: 10.11772/j.issn.1001-9081.2021020337
• Advanced computing • Previous Articles Next Articles
Received:
2021-03-08
Revised:
2021-04-25
Accepted:
2021-04-28
Online:
2022-02-11
Published:
2022-02-10
Contact:
Feifan SHI
About author:
SHI Feifan, born in 1993, M. S. candidate. His research interests include system modeling and optimization.Supported by:
通讯作者:
史非凡
作者简介:
史非凡(1993—),男,辽宁沈阳人,硕士研究生,主要研究方向:系统建模与优化;基金资助:
CLC Number:
Feifan SHI, Xuhua SHI. Adaptive reference vector based constrained multi-objective evolutionary algorithm[J]. Journal of Computer Applications, 2022, 42(2): 542-549.
史非凡, 史旭华. 基于参考向量的自适应约束多目标进化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 542-549.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021020337
函数 | 指标 | NSGA-II | C-MOEA/D | MOEA/D-DAE | CCMO | ARVCMOEAD |
---|---|---|---|---|---|---|
C1-DTLZ1 | IGD | 2.278 2E-3 (2.59E-4) | 1.870 8E-3 (1.30E-4) | 2.101 6E-3 (9.18E-5) | 1.863 9E-3 (3.11E-5) | 1.8434E-3 (7.11E-5) |
GD | 3.594 8E-5 (4.39E-5) | 3.311 8E-5 (3.12E-5) | 2.334 7E-5 (1.44E-5) | 2.173 8E-5 (1.37E-5) | 1.5665E-5 (1.89E-5) | |
C1-DTLZ3 | IGD | 3.002 4E+0 (2.58E+0) | 1.640 7E-2 (3.66E-2) | 5.126 9E-3 (2.57E-4) | 4.272 3E-3 (1.85E-4) | 4.1949E-3 (1.51E-4) |
GD | 3.002 2E-1 (2.58E-1) | 2.178 5E-3 (6.30E-3) | 6.803 5E-5 (3.39E-5) | 8.678 8E-5 (5.01E-5) | 7.3414E-5 (4.46E-5) | |
C2-DTLZ2 | IGD | 5.042 3E-3 (1.73E-4) | 3.966 0E-3 (7.89E-8) | 5.214 6E-3 (2.51E-4) | 4.181 6E-3 (6.27E-5) | 3.9660E-3 (1.45E-8) |
GD | 9.561 0E-5 (2.15E-5) | 1.9469E-6 (7.02E-7) | 8.221 3E-5 (2.36E-5) | 7.373 6E-5 (2.63E-5) | 2.321 3E-6 (2.14E-7) | |
C3-DTLZ4 | IGD | 1.513 4E-1 (4.47E-1) | 8.0812E-3 (1.40E-4) | 7.714 0E-1 (5.45E-1) | 1.000 2E-2 (5.38E-4) | 8.744 7E-3 (6.34E-4) |
GD | 3.107 8E-4 (1.18E-4) | 1.5538E-4 (4.56E-5) | 4.022 7E-2 (3.39E-2) | 3.172 5E-4 (4.51E-5) | 2.071 2E-4 (1.49E-4) | |
DC1-DTLZ1 | IGD | 7.498 1E-4 (2.55E-5) | 1.743 9E-3 (2.49E-5) | 7.179 1E-4 (3.42E-5) | 6.3100E-4 (1.76E-5) | 1.777 0E-3 (1.30E-5) |
GD | 5.851 3E-6 (4.06E-6) | 5.631 5E-6 (1.96E-6) | 9.939 7E-6 (9.97E-6) | 9.332 4E-6 (6.68E-6) | 4.1193E-6 (1.41E-6) | |
DC2-DTLZ1 | IGD | — | 1.186 0E-1 (1.01E-1) | 2.162 2E-3 (5.84E-5) | 1.849 5E-3 (1.68E-5) | 1.7877E-3 (3.77E-6) |
GD | — | 1.252 6E-2 (1.08E-2) | 8.783 8E-6 (7.75E-6) | 1.397 0E-5 (9.56E-6) | 4.4786E-6 (3.71E-6) | |
DC3-DTLZ1 | IGD | 1.707 3E-1 (1.41E-1) | 6.355 5E-2 (9.94E-2) | 6.646 9E-2 (9.76E-2) | 6.2681E-4 (2.30E-5) | 1.780 0E-3 (5.89E-6) |
GD | 1.783 6E-2 (1.49E-2) | 1.051 1E-2 (1.70E-2) | 8.115 2E-3 (1.06E-2) | 7.993 5E-6 (7.50E-6) | 4.0869E-6 (1.32E-6) | |
DC1-DTLZ3 | IGD | 1.131 1E-1 (1.43E-4) | 1.131 9E-1 (2.30E-5) | 1.131 0E-1 (7.43E-5) | 1.128 9E-1 (5.94E-5) | 1.1120E-1 (3.24E-6) |
GD | 1.223 3E-2 (2.48E-4) | 1.653 9E-2 (3.93E-4) | 1.226 9E-2 (1.74E-4) | 1.168 5E-2 (1.34E-4) | 9.5750E-3 (1.37E-3) | |
DC2-DTLZ3 | IGD | — | 5.557 0E-1 (6.48E-5) | 3.355 1E-1 (2.84E-1) | 4.182 4E-3 (2.01E-4) | 3.9773E-3 (2.85E-5) |
GD | — | 5.599 9E-2 (2.14E-4) | 3.335 5E-2 (2.87E-2) | 5.040 9E-5 (4.55E-5) | 9.6741E-6 (1.10E-5) | |
DC3-DTLZ3 | IGD | 1.508 0E+0 (5.59E-1) | 9.795 1E-1 (4.61E-1) | 5.892 8E-1 (7.77E-1) | 1.1301E-1 (3.52E-4) | 1.603 2E-1 (1.49E-1) |
GD | 1.502 4E-1 (5.60E-2) | 1.506 3E-1 (7.22E-2) | 5.994 6E-2 (7.67E-2) | 1.569 4E-2 (3.32E-4) | 1.4122E-2 (1.49E-2) | |
DASCMOP1 | IGD | 7.450 5E-1 (4.01E-2) | 7.199 3E-1 (3.64E-2) | 6.930 4E-1 (4.21E-2) | 6.901 7E-1 (5.14E-2) | 3.8640E-2 (9.67E-2) |
GD | 5.573 7E-2 (5.57E-4) | 1.203 5E-1 (1.59E-2) | 1.975 8E-1 (8.32E-2) | 4.480 1E-2 (2.36E-2) | 1.1658E-4 (4.75E-5) | |
DASCMOP2 | IGD | 3.017 1E-1 (3.01E-2) | 2.687 6E-1 (4.68E-2) | 2.301 3E-1 (3.30E-2) | 2.321 3E-1 (2.62E-2) | 8.0187E-3 (5.97E-4) |
GD | 2.2317E-5 (4.72E-6) | 4.985 8E-4 (8.43E-4) | 2.392 2E-4 (1.83E-4) | 7.214 9E-5 (5.24E-5) | 3.207 2E-4 (8.02E-5) | |
DASCMOP3 | IGD | 3.655 0E-1 (4.20E-2) | 3.746 3E-1 (4.87E-2) | 3.836 6E-1 (1.22E-1) | 3.455 5E-1 (2.40E-3) | 8.6837E-2 (1.38E-1) |
GD | 2.4035E-4 (1.03E-4) | 8.590 9E-4 (2.78E-4) | 6.144 0E-2 (8.54E-2) | 2.464 2E-4 (3.80E-5) | 1.031 9E-3 (1.09E-3) | |
DASCMOP4 | IGD | 9.442 1E-2 (1.32E-1) | 7.688 5E-2 (1.04E-1) | 3.033 9E-2 (8.49E-2) | 1.9854E-3 (1.26E-3) | 1.054 8E-2 (8.79E-3) |
GD | 1.520 9E-2 (2.42E-2) | 1.736 6E-3 (2.58E-3) | 5.813 0E-5 (3.19E-5) | 2.1810E-5 (8.52E-6) | 1.148 5E-4 (8.03E-5) | |
DASCMOP5 | IGD | 3.895 4E-1 (2.29E-1) | 5.358 4E-2 (6.33E-2) | 5.592 6E-3 (4.53E-4) | 2.8263E-3 (1.13E-4) | 5.552 7E-3 (1.27E-4) |
GD | 5.891 5E-2 (3.02E-2) | 5.033 2E-3 (8.26E-3) | 3.717 1E-4 (3.96E-5) | 2.4826E-4 (2.33E-5) | 3.053 1E-4 (5.13E-5) | |
DASCMOP6 | IGD | 5.467 5E-1 (1.02E-1) | 5.361 5E-1 (2.49E-1) | 4.326 2E-2 (3.63E-2) | 6.614 2E-2 (5.72E-2) | 2.3694E-2 (1.95E-2) |
GD | 6.107 4E-2 (2.72E-3) | 1.098 7E-1 (4.70E-2) | 1.987 1E-3 (1.72E-3) | 5.6096E-4 (1.26E-4) | 1.226 2E-3 (2.00E-3) | |
MW1 | IGD | 6.491 5E-2 (1.67E-1) | 6.444 4E-3 (2.84E-3) | 1.895 8E-2 (2.96E-2) | 1.6174E-3 (1.95E-5) | 3.121 2E-3 (4.83E-3) |
GD | 7.076 5E-5 (7.60E-5) | 3.024 3E-4 (1.02E-4) | 7.628 7E-4 (1.23E-3) | 1.7831E-5 (1.26E-5) | 1.207 4E-4 (1.32E-4) | |
MW2 | IGD | 3.820 5E-2 (2.32E-2) | 1.655 0E-2 (9.14E-3) | 8.241 9E-2 (3.89E-2) | 1.889 2E-2 (8.54E-3) | 1.3157E-2 (1.05E-2) |
GD | 3.317 6E-3 (2.53E-3) | 1.2653E-3 (1.08E-3) | 8.013 8E-3 (4.12E-3) | 1.281 0E-3 (8.33E-4) | 1.221 2E-2 (1.13E-2) | |
MW3 | IGD | 1.700 5E-2 (3.46E-2) | 5.710 2E-3 (6.06E-4) | 5.876 7E-3 (3.27E-4) | 4.928 2E-3 (1.76E-4) | 4.0370E-3 (2.71E-4) |
GD | 3.619 5E-4 (1.09E-4) | 2.681 2E-4 (9.42E-5) | 3.155 5E-4 (5.79E-5) | 2.443 1E-4 (3.92E-5) | 2.0654E-4 (5.51E-5) | |
MW4 | IGD | 5.534 6E-2 (2.46E-3) | 4.215 1E-2 (1.64E-3) | 4.265 4E-2 (2.71E-4) | 4.0941E-2 (4.17E-4) | 4.160 8E-2 (3.63E-3) |
GD | 9.079 2E-4 (2.17E-4) | 7.858 8E-4 (6.26E-4) | 7.877 3E-4 (2.80E-4) | 8.163 0E-4 (2.30E-4) | 5.0707E-4 (3.20E-4) | |
MW5 | IGD | 2.837 0E-1 (3.36E-1) | 8.019 8E-2 (2.34E-1) | 9.788 0E-2 (1.72E-1) | 9.0406E-4 (7.50E-4) | 2.330 4E-3 (9.80E-4) |
GD | 7.934 3E-4 (1.04E-4) | 1.604 5E-3 (3.85E-4) | 1.826 2E-3 (1.06E-3) | 8.130 0E-4 (1.48E-4) | 5.2198E-4 (1.69E-4) | |
MW6 | IGD | 1.164 1E-1 (1.96E-1) | 2.011 8E-2 (2.66E-2) | 4.545 7E-1 (3.31E-1) | 7.300 5E-2 (1.50E-1) | 1.3577E-2 (2.08E-2) |
GD | 4.207 4E-3 (4.19E-3) | 1.9039E-3 (2.48E-3) | 1.782 7E-2 (1.46E-2) | 3.388 1E-3 (3.85E-3) | 5.067 0E-3 (5.83E-3) | |
MW7 | IGD | 9.773 3E-3 (1.46E-2) | 4.843 5E-3 (1.92E-4) | 4.858 3E-3 (2.54E-4) | 5.033 9E-3 (4.63E-4) | 3.0354E-3 (2.39E-4) |
GD | 2.534 3E-4 (5.92E-5) | 1.938 4E-4 (2.95E-5) | 1.880 3E-4 (3.95E-5) | 1.4898E-4 (6.21E-5) | 1.511 1E-4 (3.07E-5) | |
MW8 | IGD | 5.855 8E-2 (6.62E-3) | 5.240 8E-2 (5.62E-3) | 9.100 7E-2 (4.67E-2) | 4.5941E-2 (1.90E-3) | 1.409 0E-1 (4.55E-3) |
GD | 2.354 1E-3 (1.23E-3) | 1.7774E-3 (1.27E-3) | 8.003 5E-3 (5.57E-3) | 1.888 8E-3 (4.36E-4) | 7.447 4E-3 (4.38E-3) | |
MW9 | IGD | 1.590 6E-1 (2.91E-1) | 1.302 0E-2 (5.44E-3) | 5.851 2E-3 (2.24E-3) | 4.6306E-3 (1.40E-4) | 7.094 7E-3 (2.07E-3) |
GD | 1.745 5E-2 (1.32E-2) | 9.808 4E-3 (1.95E-3) | 6.609 7E-3 (1.17E-3) | 6.4907E-3 (9.26E-4) | 6.655 9E-3 (1.07E-3) | |
MW10 | IGD | 2.176 7E-1 (2.39E-1) | 4.855 2E-2 (3.60E-2) | 2.778 6E-1 (2.45E-1) | 2.2215E-2 (1.24E-2) | 1.832 0E-1 (2.76E-1) |
GD | 3.139 5E-3 (1.57E-3) | 2.258 1E-3 (1.18E-3) | 3.174 6E-3 (1.08E-3) | 1.0306E-3 (4.34E-4) | 5.242 1E-3 (2.78E-3) | |
MW11 | IGD | 4.232 9E-1 (3.52E-1) | 8.114 0E-2 (2.16E-1) | 7.029 0E-3 (5.13E-4) | 6.025 5E-3 (2.07E-4) | 5.6965E-3 (4.15E-4) |
GD | 7.524 3E-3 (9.63E-3) | 1.865 1E-2 (6.53E-3) | 9.745 5E-3 (8.06E-4) | 1.690 0E-2 (1.21E-3) | 6.7058E-3 (3.68E-3) | |
MW12 | IGD | 8.230 4E-2 (2.43E-1) | 7.205 1E-2 (2.12E-1) | 1.431 8E-1 (2.76E-1) | 4.853 5E-3 (9.00E-5) | 4.1428E-3 (5.19E-4) |
GD | 1.047 7E-2 (1.44E-2) | 6.166 4E-3 (1.92E-2) | 1.454 0E-2 (1.92E-2) | 3.999 9E-3 (1.64E-6) | 3.0836E-3 (8.23E-4) | |
MW13 | IGD | 1.925 1E-1 (1.96E-1) | 8.5635E-2 (4.02E-2) | 2.143 9E-1 (8.56E-2) | 1.031 0E-1 (7.80E-2) | 3.681 8E-1 (3.56E-1) |
GD | 5.118 0E-3 (1.54E-3) | 4.2576E-3 (2.66E-3) | 1.679 6E-2 (9.72E-3) | 5.949 0E-3 (6.90E-3) | 4.600 3E-2 (7.36E-2) | |
MW14 | IGD | 1.240 2E-1 (4.49E-3) | 2.118 2E-1 (9.10E-4) | 1.257 5E-1 (5.09E-2) | 9.7902E-2 (2.00E-3) | 2.092 4E-1 (5.13E-4) |
GD | 4.091 3E-3 (8.98E-4) | 3.010 3E-3 (1.27E-3) | 2.7331E-3 (3.44E-4) | 3.429 0E-3 (3.92E-4) | 3.247 3E-3 (1.53E-3) |
Tab. 1 IGD and GD of five algorithms on DTLZ,MW and DASCMOP
函数 | 指标 | NSGA-II | C-MOEA/D | MOEA/D-DAE | CCMO | ARVCMOEAD |
---|---|---|---|---|---|---|
C1-DTLZ1 | IGD | 2.278 2E-3 (2.59E-4) | 1.870 8E-3 (1.30E-4) | 2.101 6E-3 (9.18E-5) | 1.863 9E-3 (3.11E-5) | 1.8434E-3 (7.11E-5) |
GD | 3.594 8E-5 (4.39E-5) | 3.311 8E-5 (3.12E-5) | 2.334 7E-5 (1.44E-5) | 2.173 8E-5 (1.37E-5) | 1.5665E-5 (1.89E-5) | |
C1-DTLZ3 | IGD | 3.002 4E+0 (2.58E+0) | 1.640 7E-2 (3.66E-2) | 5.126 9E-3 (2.57E-4) | 4.272 3E-3 (1.85E-4) | 4.1949E-3 (1.51E-4) |
GD | 3.002 2E-1 (2.58E-1) | 2.178 5E-3 (6.30E-3) | 6.803 5E-5 (3.39E-5) | 8.678 8E-5 (5.01E-5) | 7.3414E-5 (4.46E-5) | |
C2-DTLZ2 | IGD | 5.042 3E-3 (1.73E-4) | 3.966 0E-3 (7.89E-8) | 5.214 6E-3 (2.51E-4) | 4.181 6E-3 (6.27E-5) | 3.9660E-3 (1.45E-8) |
GD | 9.561 0E-5 (2.15E-5) | 1.9469E-6 (7.02E-7) | 8.221 3E-5 (2.36E-5) | 7.373 6E-5 (2.63E-5) | 2.321 3E-6 (2.14E-7) | |
C3-DTLZ4 | IGD | 1.513 4E-1 (4.47E-1) | 8.0812E-3 (1.40E-4) | 7.714 0E-1 (5.45E-1) | 1.000 2E-2 (5.38E-4) | 8.744 7E-3 (6.34E-4) |
GD | 3.107 8E-4 (1.18E-4) | 1.5538E-4 (4.56E-5) | 4.022 7E-2 (3.39E-2) | 3.172 5E-4 (4.51E-5) | 2.071 2E-4 (1.49E-4) | |
DC1-DTLZ1 | IGD | 7.498 1E-4 (2.55E-5) | 1.743 9E-3 (2.49E-5) | 7.179 1E-4 (3.42E-5) | 6.3100E-4 (1.76E-5) | 1.777 0E-3 (1.30E-5) |
GD | 5.851 3E-6 (4.06E-6) | 5.631 5E-6 (1.96E-6) | 9.939 7E-6 (9.97E-6) | 9.332 4E-6 (6.68E-6) | 4.1193E-6 (1.41E-6) | |
DC2-DTLZ1 | IGD | — | 1.186 0E-1 (1.01E-1) | 2.162 2E-3 (5.84E-5) | 1.849 5E-3 (1.68E-5) | 1.7877E-3 (3.77E-6) |
GD | — | 1.252 6E-2 (1.08E-2) | 8.783 8E-6 (7.75E-6) | 1.397 0E-5 (9.56E-6) | 4.4786E-6 (3.71E-6) | |
DC3-DTLZ1 | IGD | 1.707 3E-1 (1.41E-1) | 6.355 5E-2 (9.94E-2) | 6.646 9E-2 (9.76E-2) | 6.2681E-4 (2.30E-5) | 1.780 0E-3 (5.89E-6) |
GD | 1.783 6E-2 (1.49E-2) | 1.051 1E-2 (1.70E-2) | 8.115 2E-3 (1.06E-2) | 7.993 5E-6 (7.50E-6) | 4.0869E-6 (1.32E-6) | |
DC1-DTLZ3 | IGD | 1.131 1E-1 (1.43E-4) | 1.131 9E-1 (2.30E-5) | 1.131 0E-1 (7.43E-5) | 1.128 9E-1 (5.94E-5) | 1.1120E-1 (3.24E-6) |
GD | 1.223 3E-2 (2.48E-4) | 1.653 9E-2 (3.93E-4) | 1.226 9E-2 (1.74E-4) | 1.168 5E-2 (1.34E-4) | 9.5750E-3 (1.37E-3) | |
DC2-DTLZ3 | IGD | — | 5.557 0E-1 (6.48E-5) | 3.355 1E-1 (2.84E-1) | 4.182 4E-3 (2.01E-4) | 3.9773E-3 (2.85E-5) |
GD | — | 5.599 9E-2 (2.14E-4) | 3.335 5E-2 (2.87E-2) | 5.040 9E-5 (4.55E-5) | 9.6741E-6 (1.10E-5) | |
DC3-DTLZ3 | IGD | 1.508 0E+0 (5.59E-1) | 9.795 1E-1 (4.61E-1) | 5.892 8E-1 (7.77E-1) | 1.1301E-1 (3.52E-4) | 1.603 2E-1 (1.49E-1) |
GD | 1.502 4E-1 (5.60E-2) | 1.506 3E-1 (7.22E-2) | 5.994 6E-2 (7.67E-2) | 1.569 4E-2 (3.32E-4) | 1.4122E-2 (1.49E-2) | |
DASCMOP1 | IGD | 7.450 5E-1 (4.01E-2) | 7.199 3E-1 (3.64E-2) | 6.930 4E-1 (4.21E-2) | 6.901 7E-1 (5.14E-2) | 3.8640E-2 (9.67E-2) |
GD | 5.573 7E-2 (5.57E-4) | 1.203 5E-1 (1.59E-2) | 1.975 8E-1 (8.32E-2) | 4.480 1E-2 (2.36E-2) | 1.1658E-4 (4.75E-5) | |
DASCMOP2 | IGD | 3.017 1E-1 (3.01E-2) | 2.687 6E-1 (4.68E-2) | 2.301 3E-1 (3.30E-2) | 2.321 3E-1 (2.62E-2) | 8.0187E-3 (5.97E-4) |
GD | 2.2317E-5 (4.72E-6) | 4.985 8E-4 (8.43E-4) | 2.392 2E-4 (1.83E-4) | 7.214 9E-5 (5.24E-5) | 3.207 2E-4 (8.02E-5) | |
DASCMOP3 | IGD | 3.655 0E-1 (4.20E-2) | 3.746 3E-1 (4.87E-2) | 3.836 6E-1 (1.22E-1) | 3.455 5E-1 (2.40E-3) | 8.6837E-2 (1.38E-1) |
GD | 2.4035E-4 (1.03E-4) | 8.590 9E-4 (2.78E-4) | 6.144 0E-2 (8.54E-2) | 2.464 2E-4 (3.80E-5) | 1.031 9E-3 (1.09E-3) | |
DASCMOP4 | IGD | 9.442 1E-2 (1.32E-1) | 7.688 5E-2 (1.04E-1) | 3.033 9E-2 (8.49E-2) | 1.9854E-3 (1.26E-3) | 1.054 8E-2 (8.79E-3) |
GD | 1.520 9E-2 (2.42E-2) | 1.736 6E-3 (2.58E-3) | 5.813 0E-5 (3.19E-5) | 2.1810E-5 (8.52E-6) | 1.148 5E-4 (8.03E-5) | |
DASCMOP5 | IGD | 3.895 4E-1 (2.29E-1) | 5.358 4E-2 (6.33E-2) | 5.592 6E-3 (4.53E-4) | 2.8263E-3 (1.13E-4) | 5.552 7E-3 (1.27E-4) |
GD | 5.891 5E-2 (3.02E-2) | 5.033 2E-3 (8.26E-3) | 3.717 1E-4 (3.96E-5) | 2.4826E-4 (2.33E-5) | 3.053 1E-4 (5.13E-5) | |
DASCMOP6 | IGD | 5.467 5E-1 (1.02E-1) | 5.361 5E-1 (2.49E-1) | 4.326 2E-2 (3.63E-2) | 6.614 2E-2 (5.72E-2) | 2.3694E-2 (1.95E-2) |
GD | 6.107 4E-2 (2.72E-3) | 1.098 7E-1 (4.70E-2) | 1.987 1E-3 (1.72E-3) | 5.6096E-4 (1.26E-4) | 1.226 2E-3 (2.00E-3) | |
MW1 | IGD | 6.491 5E-2 (1.67E-1) | 6.444 4E-3 (2.84E-3) | 1.895 8E-2 (2.96E-2) | 1.6174E-3 (1.95E-5) | 3.121 2E-3 (4.83E-3) |
GD | 7.076 5E-5 (7.60E-5) | 3.024 3E-4 (1.02E-4) | 7.628 7E-4 (1.23E-3) | 1.7831E-5 (1.26E-5) | 1.207 4E-4 (1.32E-4) | |
MW2 | IGD | 3.820 5E-2 (2.32E-2) | 1.655 0E-2 (9.14E-3) | 8.241 9E-2 (3.89E-2) | 1.889 2E-2 (8.54E-3) | 1.3157E-2 (1.05E-2) |
GD | 3.317 6E-3 (2.53E-3) | 1.2653E-3 (1.08E-3) | 8.013 8E-3 (4.12E-3) | 1.281 0E-3 (8.33E-4) | 1.221 2E-2 (1.13E-2) | |
MW3 | IGD | 1.700 5E-2 (3.46E-2) | 5.710 2E-3 (6.06E-4) | 5.876 7E-3 (3.27E-4) | 4.928 2E-3 (1.76E-4) | 4.0370E-3 (2.71E-4) |
GD | 3.619 5E-4 (1.09E-4) | 2.681 2E-4 (9.42E-5) | 3.155 5E-4 (5.79E-5) | 2.443 1E-4 (3.92E-5) | 2.0654E-4 (5.51E-5) | |
MW4 | IGD | 5.534 6E-2 (2.46E-3) | 4.215 1E-2 (1.64E-3) | 4.265 4E-2 (2.71E-4) | 4.0941E-2 (4.17E-4) | 4.160 8E-2 (3.63E-3) |
GD | 9.079 2E-4 (2.17E-4) | 7.858 8E-4 (6.26E-4) | 7.877 3E-4 (2.80E-4) | 8.163 0E-4 (2.30E-4) | 5.0707E-4 (3.20E-4) | |
MW5 | IGD | 2.837 0E-1 (3.36E-1) | 8.019 8E-2 (2.34E-1) | 9.788 0E-2 (1.72E-1) | 9.0406E-4 (7.50E-4) | 2.330 4E-3 (9.80E-4) |
GD | 7.934 3E-4 (1.04E-4) | 1.604 5E-3 (3.85E-4) | 1.826 2E-3 (1.06E-3) | 8.130 0E-4 (1.48E-4) | 5.2198E-4 (1.69E-4) | |
MW6 | IGD | 1.164 1E-1 (1.96E-1) | 2.011 8E-2 (2.66E-2) | 4.545 7E-1 (3.31E-1) | 7.300 5E-2 (1.50E-1) | 1.3577E-2 (2.08E-2) |
GD | 4.207 4E-3 (4.19E-3) | 1.9039E-3 (2.48E-3) | 1.782 7E-2 (1.46E-2) | 3.388 1E-3 (3.85E-3) | 5.067 0E-3 (5.83E-3) | |
MW7 | IGD | 9.773 3E-3 (1.46E-2) | 4.843 5E-3 (1.92E-4) | 4.858 3E-3 (2.54E-4) | 5.033 9E-3 (4.63E-4) | 3.0354E-3 (2.39E-4) |
GD | 2.534 3E-4 (5.92E-5) | 1.938 4E-4 (2.95E-5) | 1.880 3E-4 (3.95E-5) | 1.4898E-4 (6.21E-5) | 1.511 1E-4 (3.07E-5) | |
MW8 | IGD | 5.855 8E-2 (6.62E-3) | 5.240 8E-2 (5.62E-3) | 9.100 7E-2 (4.67E-2) | 4.5941E-2 (1.90E-3) | 1.409 0E-1 (4.55E-3) |
GD | 2.354 1E-3 (1.23E-3) | 1.7774E-3 (1.27E-3) | 8.003 5E-3 (5.57E-3) | 1.888 8E-3 (4.36E-4) | 7.447 4E-3 (4.38E-3) | |
MW9 | IGD | 1.590 6E-1 (2.91E-1) | 1.302 0E-2 (5.44E-3) | 5.851 2E-3 (2.24E-3) | 4.6306E-3 (1.40E-4) | 7.094 7E-3 (2.07E-3) |
GD | 1.745 5E-2 (1.32E-2) | 9.808 4E-3 (1.95E-3) | 6.609 7E-3 (1.17E-3) | 6.4907E-3 (9.26E-4) | 6.655 9E-3 (1.07E-3) | |
MW10 | IGD | 2.176 7E-1 (2.39E-1) | 4.855 2E-2 (3.60E-2) | 2.778 6E-1 (2.45E-1) | 2.2215E-2 (1.24E-2) | 1.832 0E-1 (2.76E-1) |
GD | 3.139 5E-3 (1.57E-3) | 2.258 1E-3 (1.18E-3) | 3.174 6E-3 (1.08E-3) | 1.0306E-3 (4.34E-4) | 5.242 1E-3 (2.78E-3) | |
MW11 | IGD | 4.232 9E-1 (3.52E-1) | 8.114 0E-2 (2.16E-1) | 7.029 0E-3 (5.13E-4) | 6.025 5E-3 (2.07E-4) | 5.6965E-3 (4.15E-4) |
GD | 7.524 3E-3 (9.63E-3) | 1.865 1E-2 (6.53E-3) | 9.745 5E-3 (8.06E-4) | 1.690 0E-2 (1.21E-3) | 6.7058E-3 (3.68E-3) | |
MW12 | IGD | 8.230 4E-2 (2.43E-1) | 7.205 1E-2 (2.12E-1) | 1.431 8E-1 (2.76E-1) | 4.853 5E-3 (9.00E-5) | 4.1428E-3 (5.19E-4) |
GD | 1.047 7E-2 (1.44E-2) | 6.166 4E-3 (1.92E-2) | 1.454 0E-2 (1.92E-2) | 3.999 9E-3 (1.64E-6) | 3.0836E-3 (8.23E-4) | |
MW13 | IGD | 1.925 1E-1 (1.96E-1) | 8.5635E-2 (4.02E-2) | 2.143 9E-1 (8.56E-2) | 1.031 0E-1 (7.80E-2) | 3.681 8E-1 (3.56E-1) |
GD | 5.118 0E-3 (1.54E-3) | 4.2576E-3 (2.66E-3) | 1.679 6E-2 (9.72E-3) | 5.949 0E-3 (6.90E-3) | 4.600 3E-2 (7.36E-2) | |
MW14 | IGD | 1.240 2E-1 (4.49E-3) | 2.118 2E-1 (9.10E-4) | 1.257 5E-1 (5.09E-2) | 9.7902E-2 (2.00E-3) | 2.092 4E-1 (5.13E-4) |
GD | 4.091 3E-3 (8.98E-4) | 3.010 3E-3 (1.27E-3) | 2.7331E-3 (3.44E-4) | 3.429 0E-3 (3.92E-4) | 3.247 3E-3 (1.53E-3) |
测试函数种类 | NSGA-II | C-MOEA/D | MOEA/D-DAE | CCMO | ARVCMOEA |
---|---|---|---|---|---|
MW | 3.3849 | 37.028 0 | 131.330 0 | 64.406 0 | 49.184 0 |
DTLZ | 1.6804 | 24.580 0 | 70.264 0 | 34.346 0 | 24.635 0 |
DASCMOP | 8.3568 | 28.006 0 | 92.320 0 | 29.321 0 | 54.791 0 |
Tab. 2 Average computing times of five algorithms on three series of test functions
测试函数种类 | NSGA-II | C-MOEA/D | MOEA/D-DAE | CCMO | ARVCMOEA |
---|---|---|---|---|---|
MW | 3.3849 | 37.028 0 | 131.330 0 | 64.406 0 | 49.184 0 |
DTLZ | 1.6804 | 24.580 0 | 70.264 0 | 34.346 0 | 24.635 0 |
DASCMOP | 8.3568 | 28.006 0 | 92.320 0 | 29.321 0 | 54.791 0 |
1 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
2 | HUA Y C, JIN Y C, HAO K R. A clustering-based adaptive evolutionary algorithm for multiobjective optimization with irregular Pareto fronts[J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2758-2770. 10.1109/tcyb.2018.2834466 |
3 | TIAN Y, CHENG R, ZHANG X Y, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 609-622. 10.1109/tevc.2017.2749619 |
4 | ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731. 10.1109/tevc.2007.892759 |
5 | JAIN H, DEB K. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622. 10.1109/tevc.2013.2281534 |
6 | QI Y T, MA X L, LIU F, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary Computation, 2014, 22(2): 231-264. 10.1162/evco_a_00109 |
7 | CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. 10.1109/tevc.2016.2519378 |
8 | GONG W Y, CAI Z H, LIANG D W. Adaptive ranking mutation operator based differential evolution for constrained optimization[J]. IEEE Transactions on Cybernetics, 2015, 45(4): 716-727. 10.1109/tcyb.2014.2334692 |
9 | RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(3) 284-294. 10.1109/4235.873238 |
10 | DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics & Engineering, 2000, 186(2/3/4):311-338. 10.1016/s0045-7825(99)00389-8 |
11 | MALLIPEDDI R, SUGANTHAN P N. Ensemble of constraint handling techniques[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(4): 561-579. 10.1109/tevc.2009.2033582 |
12 | FAN Z, LI W J, CAI X Y, et al. Difficulty adjustable and scalable constrained multiobjective test problem toolkit[J]. Evolutionary Computation, 2020, 28(3): 339-378. 10.1162/evco_a_00259 |
13 | ZHU Q L, ZHANG Q F, LIN Q Z, et al. A constrained multiobjective evolutionary algorithm with detect-and-escape strategy[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5): 938-947. 10.1109/tevc.2020.2981949 |
14 | TIAN Y, ZHANG T, XIAO J H, et al. A coevolutionary framework for constrained multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(1): 102-116. 10.1109/tevc.2020.3004012 |
15 | LI K, CHEN R Z, FU G T, et al. Two-archive evolutionary algorithm for constrained multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(2): 303-315. 10.1109/tevc.2018.2855411 |
16 | MA Z W, WANG Y. Evolutionary constrained multiobjective optimization: test suite construction and performance comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986. 10.1109/tevc.2019.2896967 |
17 | TIAN Y, CHENG R, ZHANG X Y, et al. PlatEMO: a Matlab platform for evolutionary multi-objective optimization [educational forum][J]. IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87. 10.1109/MCI.2017.2742868 |
18 | 田野,张兴义.超多目标进化优化研究现状及发展趋势研究[J].广州大学学报(自然科学版), 2019, 18(1): 10-19. 10.3969/j.issn.1671-4229.2019.01.002 |
TIAN Y, ZHANG X Y. On the research status and development trends of evolutionary many-objective optimization[J]. Journal of Guangzhou University (Natural Science Edition), 2019, 18(1): 10-19. 10.3969/j.issn.1671-4229.2019.01.002 |
[1] | Fengfeng WEI, Weineng CHEN. Distributed data-driven evolutionary computation for multi-constrained optimization [J]. Journal of Computer Applications, 2024, 44(5): 1393-1400. |
[2] | Yuntao ZHAO, Wanqi XIE, Weigang LI, Jiaming HU. Robot hand-eye calibration algorithm based on covariance matrix adaptation evolutionary strategy [J]. Journal of Computer Applications, 2023, 43(10): 3225-3229. |
[3] | XIONG Yong, ZHANG Jia, YU Jiajun, ZHANG Benren, LIANG Xuanzhuo, ZHU Qige. Intelligent layout optimization algorithm for 3D pipelines of ships [J]. Journal of Computer Applications, 2020, 40(7): 2164-2170. |
[4] | XI Yarui, QIAO Zhiwei, WEN Jing, ZHANG Yanjiao, YANG Wenjing, YAN Huiwen. High order TV image reconstruction algorithm based on Chambolle-Pock algorithm framework [J]. Journal of Computer Applications, 2020, 40(6): 1793-1798. |
[5] | SHI Xiaoqian, CHEN Qidong, SUN Jun, MAO Zhongjie. Adaptive distribution based quantum-behaved particle swarm optimization algorithm for engineering constrained optimization problem [J]. Journal of Computer Applications, 2020, 40(5): 1382-1388. |
[6] | LI Xiaowen, YUAN Xianghui, ZHOU Chunxiang. Optimal line-shape parameter estimation algorithm of orbit plane based on inertial angle measurement [J]. Journal of Computer Applications, 2016, 36(12): 3499-3504. |
[7] | LI Kangshun, ZUO Lei, LI Wei. Novel differential evolution algorithm based on simplex-orthogonal experimental design [J]. Journal of Computer Applications, 2016, 36(1): 143-149. |
[8] | LONG Wen, ZHAO Dongquan, XU Songjin. Improved grey wolf optimization algorithm for constrained optimization problem [J]. Journal of Computer Applications, 2015, 35(9): 2590-2595. |
[9] | XU Jun, LU Haiyan, SHI Guijuan. Application of restricted velocity particle swarm optimization and self-adaptive velocity particle swarm optimization to unconstrained optimization problem [J]. Journal of Computer Applications, 2015, 35(3): 668-674. |
[10] | WEI Wenhong. Parallel constrained differential evolution algorithm merging with multi-constraint handling techniques [J]. Journal of Computer Applications, 2015, 35(10): 2933-2938. |
[11] | YU Dongmei GAO Leifu. New algorithm for semidefinite programming [J]. Journal of Computer Applications, 2014, 34(1): 182-184. |
[12] | LI Ni OUYANG Ai-jia LI Ken-li. Improved particle swarm optimization for constrained optimization functions [J]. Journal of Computer Applications, 2012, 32(12): 3319-3321. |
[13] | XIAO Su HAN Guo-qiang. Image restoration algorithm based on sparse regularized optimization [J]. Journal of Computer Applications, 2012, 32(01): 261-263. |
[14] | YU Xin-bao LI Shao-bo YANG Guan-ci QU Jing-lei ZHONG Yong. Multi-objective optimization of constrained parallel hybrid electric vehicle based on SPEA2 [J]. Journal of Computer Applications, 2011, 31(11): 3091-3093. |
[15] | . Perceptive particle swarm optimization algorithm for constrained optimization problems [J]. Journal of Computer Applications, 2011, 31(01): 85-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||