Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (5): 1393-1400.DOI: 10.11772/j.issn.1001-9081.2023121814
Special Issue: 进化计算专题(2024年第5期“进化计算专题”导读,全文已上线)
• Special issue on evolutionary calculation • Previous Articles Next Articles
Received:
2023-12-29
Accepted:
2024-01-16
Online:
2024-04-26
Published:
2024-05-10
Contact:
Weineng CHEN
About author:
WEI Fengfeng, born in 1996, Ph. D. Her research interests include swarm intelligence, evolutionary computation.
Supported by:
通讯作者:
陈伟能
作者简介:
魏凤凤(1996—),女,山东青岛人,博士,CCF会员,主要研究方向:群体智能、演化计算基金资助:
CLC Number:
Fengfeng WEI, Weineng CHEN. Distributed data-driven evolutionary computation for multi-constrained optimization[J]. Journal of Computer Applications, 2024, 44(5): 1393-1400.
魏凤凤, 陈伟能. 分布式数据驱动的多约束进化优化算法[J]. 《计算机应用》唯一官方网站, 2024, 44(5): 1393-1400.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023121814
测试用例 | 不等约束数 | 维数 | 可行域比例/% |
---|---|---|---|
g01 | 9 | 13 | 0.011 1 |
g02 | 2 | 20 | 99.997 1 |
g04 | 6 | 5 | 52.123 0 |
g06 | 2 | 2 | 0.006 6 |
g07 | 8 | 10 | 0.000 3 |
g08 | 2 | 2 | 0.856 0 |
g09 | 4 | 7 | 0.512 1 |
g10 | 6 | 8 | 0.001 0 |
g12 | 1 | 3 | 4.771 3 |
g16 | 38 | 5 | 0.020 4 |
g18 | 13 | 9 | 0.000 0 |
g19 | 5 | 15 | 33.476 1 |
g24 | 2 | 2 | 79.655 6 |
c01 | 2 | 30 | 100.000 0 |
c07 | 1 | 30 | 50.372 5 |
c08 | 1 | 30 | 37.527 8 |
c13 | 3 | 30 | 0.000 0 |
c14 | 3 | 30 | 0.612 3 |
c15 | 3 | 30 | 0.602 3 |
Tab. 1 Test cases used in experiment from CEC2006 and CEC2010
测试用例 | 不等约束数 | 维数 | 可行域比例/% |
---|---|---|---|
g01 | 9 | 13 | 0.011 1 |
g02 | 2 | 20 | 99.997 1 |
g04 | 6 | 5 | 52.123 0 |
g06 | 2 | 2 | 0.006 6 |
g07 | 8 | 10 | 0.000 3 |
g08 | 2 | 2 | 0.856 0 |
g09 | 4 | 7 | 0.512 1 |
g10 | 6 | 8 | 0.001 0 |
g12 | 1 | 3 | 4.771 3 |
g16 | 38 | 5 | 0.020 4 |
g18 | 13 | 9 | 0.000 0 |
g19 | 5 | 15 | 33.476 1 |
g24 | 2 | 2 | 79.655 6 |
c01 | 2 | 30 | 100.000 0 |
c07 | 1 | 30 | 50.372 5 |
c08 | 1 | 30 | 37.527 8 |
c13 | 3 | 30 | 0.000 0 |
c14 | 3 | 30 | 0.612 3 |
c15 | 3 | 30 | 0.602 3 |
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | -14.793 1 | -9.611 3- | -5.214 2- | -0.751 4- |
g02 | -0.413 8 | -0.338 08- | -0.318 1- | -0.340 3- |
g04 | -3.044 3E+04 | -3.043 0E+04- | -3.060 0E+04+ | -2.981 8E+04- |
g06 | -6.961 8E+03 | -6.110 0E+03- | -6.954 4E+03- | -3.646 9E+03- |
g07 | 27.936 3 | 28.904 3- | 997.986 2- | 216.913 0≈ |
g08 | -0.095 8 | -0.094 7- | -0.095 8- | -0.072 6- |
g09 | 963.162 9 | 2.392 7E+06- | 823.029 2+ | 934.816 4≈ |
g10 | 7.423 0E+03 | NaN/ | 1.288 1E+04- | 1.150 2E+04- |
g12 | -1.000 0 | -1.000 0≈ | -1.000 0≈ | -1.000 0≈ |
g16 | -1.577 6 | -1.402 2- | -1.537 9≈ | -1.246 6≈ |
g18 | NaN | -0.402 6/ | NaN/ | -0.083 9/ |
g19 | 165.747 1 | 1.739 5E+03- | 578.727 0- | 810.270 7- |
g24 | -5.508 0 | -5.471 9≈ | -5.505 0- | -5.168 1- |
c01 | -0.292 5 | -0.189 0- | -0.222 7- | -0.285 5- |
c07 | 9.113 3E+07 | 9.623 8E+10- | 4.309 9E+08- | 4.971 5E+09- |
c08 | 4.009 7E+08 | 8.795 3E+10- | 1.292 5E+09- | 1.831 8E+09- |
c13 | -11.295 9 | -7.545 5- | -14.820 0+ | -6.780 3- |
c14 | 6.057 2E+12 | 3.964 8E+13- | 6.978 9E+13- | 3.103 0E+14- |
c15 | NaN | 5.115 9E+14/ | 3.269 7E+14/ | 6.293 1E+14/ |
#(+,-,≈,/) | (0,14,2,3) | (3,12,2,2) | (0,13,4,2) |
Tab. 2 Mean comparison results between DDDEA and three centralized algorithms
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | -14.793 1 | -9.611 3- | -5.214 2- | -0.751 4- |
g02 | -0.413 8 | -0.338 08- | -0.318 1- | -0.340 3- |
g04 | -3.044 3E+04 | -3.043 0E+04- | -3.060 0E+04+ | -2.981 8E+04- |
g06 | -6.961 8E+03 | -6.110 0E+03- | -6.954 4E+03- | -3.646 9E+03- |
g07 | 27.936 3 | 28.904 3- | 997.986 2- | 216.913 0≈ |
g08 | -0.095 8 | -0.094 7- | -0.095 8- | -0.072 6- |
g09 | 963.162 9 | 2.392 7E+06- | 823.029 2+ | 934.816 4≈ |
g10 | 7.423 0E+03 | NaN/ | 1.288 1E+04- | 1.150 2E+04- |
g12 | -1.000 0 | -1.000 0≈ | -1.000 0≈ | -1.000 0≈ |
g16 | -1.577 6 | -1.402 2- | -1.537 9≈ | -1.246 6≈ |
g18 | NaN | -0.402 6/ | NaN/ | -0.083 9/ |
g19 | 165.747 1 | 1.739 5E+03- | 578.727 0- | 810.270 7- |
g24 | -5.508 0 | -5.471 9≈ | -5.505 0- | -5.168 1- |
c01 | -0.292 5 | -0.189 0- | -0.222 7- | -0.285 5- |
c07 | 9.113 3E+07 | 9.623 8E+10- | 4.309 9E+08- | 4.971 5E+09- |
c08 | 4.009 7E+08 | 8.795 3E+10- | 1.292 5E+09- | 1.831 8E+09- |
c13 | -11.295 9 | -7.545 5- | -14.820 0+ | -6.780 3- |
c14 | 6.057 2E+12 | 3.964 8E+13- | 6.978 9E+13- | 3.103 0E+14- |
c15 | NaN | 5.115 9E+14/ | 3.269 7E+14/ | 6.293 1E+14/ |
#(+,-,≈,/) | (0,14,2,3) | (3,12,2,2) | (0,13,4,2) |
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | 1.00 | 1.00 | 0.80 | 0.90 |
g02 | 1.00 | 1.00 | 1.00 | 1.00 |
g04 | 1.00 | 1.00 | 1.00 | 1.00 |
g06 | 1.00 | 1.00 | 1.00 | 0.80 |
g07 | 1.00 | 0.65 | 0.40 | 0.05 |
g08 | 1.00 | 1.00 | 1.00 | 1.00 |
g09 | 1.00 | 0.80 | 1.00 | 1.00 |
g10 | 1.00 | 0.00 | 0.95 | 0.10 |
g12 | 1.00 | 0.20 | 1.00 | 1.00 |
g16 | 0.50 | 1.00 | 0.05 | 0.05 |
g18 | 0.00 | 1.00 | 0.00 | 0.25 |
g19 | 1.00 | 1.00 | 1.00 | 1.00 |
g24 | 1.00 | 1.00 | 1.00 | 1.00 |
c01 | 1.00 | 1.00 | 1.00 | 1.00 |
c07 | 1.00 | 1.00 | 1.00 | 1.00 |
c08 | 1.00 | 1.00 | 1.00 | 1.00 |
c13 | 1.00 | 0.80 | 0.95 | 1.00 |
c14 | 1.00 | 1.00 | 1.00 | 0.95 |
c15 | 0.00 | 0.20 | 0.10 | 0.15 |
Tab. 3 Successful ratio comparison results between DDDEA and three centralized algorithms
测试用例 | DDDEA | GPEEC | MPMLS | KTLBO |
---|---|---|---|---|
g01 | 1.00 | 1.00 | 0.80 | 0.90 |
g02 | 1.00 | 1.00 | 1.00 | 1.00 |
g04 | 1.00 | 1.00 | 1.00 | 1.00 |
g06 | 1.00 | 1.00 | 1.00 | 0.80 |
g07 | 1.00 | 0.65 | 0.40 | 0.05 |
g08 | 1.00 | 1.00 | 1.00 | 1.00 |
g09 | 1.00 | 0.80 | 1.00 | 1.00 |
g10 | 1.00 | 0.00 | 0.95 | 0.10 |
g12 | 1.00 | 0.20 | 1.00 | 1.00 |
g16 | 0.50 | 1.00 | 0.05 | 0.05 |
g18 | 0.00 | 1.00 | 0.00 | 0.25 |
g19 | 1.00 | 1.00 | 1.00 | 1.00 |
g24 | 1.00 | 1.00 | 1.00 | 1.00 |
c01 | 1.00 | 1.00 | 1.00 | 1.00 |
c07 | 1.00 | 1.00 | 1.00 | 1.00 |
c08 | 1.00 | 1.00 | 1.00 | 1.00 |
c13 | 1.00 | 0.80 | 0.95 | 1.00 |
c14 | 1.00 | 1.00 | 1.00 | 0.95 |
c15 | 0.00 | 0.20 | 0.10 | 0.15 |
1 | 马华东,赵东,王新兵,等.一种新型群智感知系统架构模型和实现方法[J].中国科学:信息科学,2023,53(7):1262-1280. 10.1360/ssi-2022-0157 |
MA H D, ZHAO D, WANG X B, et al. A novel crowdsensing system architecture model and its implementation methods[J]. SCIENTIA SINICA Informationis, 2023, 53(7): 1262-1280. 10.1360/ssi-2022-0157 | |
2 | 门瑞,樊书嘉,阿喜达,等.物联网中结合计算卸载和区块链的综述[J].计算机应用,2023,43(10):3008-3016. 10.11772/j.issn.1001-9081.2022091466 |
MEN R, FAN S J, SHAN Axida, et al. Survey on combination of computation offloading and blockchain in internet of things[J]. Journal of Computer Applications, 2023, 43(10): 3008-3016. 10.11772/j.issn.1001-9081.2022091466 | |
3 | 吴磊,郭斌,徐若楠,等.泛在计算视角下的群智模块化机器人[J]. 中国科学:信息科学,2023,53(11):2107-2151. 10.1360/ssi-2022-0385 |
WU L, GUO B, XU R N, et al. Emergence of crowd modular robotics: a ubiquitous computing perspective[J]. SCIENTIA SINICA Informationis, 2023, 53(11): 2107-2151. 10.1360/ssi-2022-0385 | |
4 | ZHANG Z, LIN S, DEDEOGLU M, et al. Data-driven distributionally robust optimization for edge intelligence[C]// Proceedings of the 2020 IEEE Conference on Computer Communications. Piscataway: IEEE, 2020: 2619-2628. 10.1109/infocom41043.2020.9155440 |
5 | YANG Q, LIU Y, CHEN T, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19. 10.1145/3298981 |
6 | 公茂果,高原,王炯乾,等.基于进化策略的自适应联邦学习算法[J].中国科学:信息科学,2023,53(3):437-453. 10.1360/ssi-2021-0190 |
GONG M G, GAO Y, WANG J Q, et al. Adaptive federated learning algorithm based on evolution strategies[J]. SCIENTIA SINICA Informationis, 2023, 53(3): 437-453. 10.1360/ssi-2021-0190 | |
7 | HONG T, ZHANG Y, LIU J, et al. Distributed data-driven optimization for voltage regulation in distribution systems[J]. IEEE Transactions on Power Systems, 2023, 39(1): 1263-1273. 10.1109/tpwrs.2023.3242868 |
8 | QIN J, ZHU Y, FU W. Distributed clustering algorithm in sensor networks via normalized information measures[J]. IEEE Transactions on Signal Processing, 2020, 68: 3266-3279. 10.1109/tsp.2020.2995506 |
9 | WHITLEY L D. An overview of evolutionary algorithms: practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831. 10.1016/s0950-5849(01)00188-4 |
10 | TANG J, LIU G, PAN Q. A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(10): 1627-1643. 10.1109/jas.2021.1004129 |
11 | 刘若辰,李建霞,刘静,等.动态多目标优化研究综述[J].计算机学报,2020,43(7):1246-1278. 10.11897/SP.J.1016.2020.01246 |
LIU R C, LI J X, LIU J, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278. 10.11897/SP.J.1016.2020.01246 | |
12 | 柴天佑,丁进良,王宏,等.复杂工业过程运行的混合智能优化控制方法[J].自动化学报,2008,34(5):505-515. 10.3724/sp.j.1004.2008.00505 |
CHAI T Y, DING J L, WANG H, et al. Hybrid intelligent optimal control method for operation of complex industrial processes[J]. Acta Automatica Sinica, 2008, 34(5): 505-515. 10.3724/sp.j.1004.2008.00505 | |
13 | 王凌,王晶晶.考虑运输时间的分布式绿色柔性作业车间调度协同群智能优化[J].中国科学:技术科学,2023,53(2):243-257. 10.1360/sst-2021-0355 |
WANG L, WANG J J. A cooperative memetic algorithm for the distributed green flexible job shop with transportation time[J]. SCIENTIA SINICA Technologica, 2023, 53(2): 243-257. 10.1360/sst-2021-0355 | |
14 | GONG Y-J, CHEN W-N, ZHAN Z-H, et al. Distributed evolutionary algorithms and their models: a survey of the state-of-the-art[J]. Applied Soft Computing, 2015, 34: 286-300. 10.1016/j.asoc.2015.04.061 |
15 | XU J, JIN Y, DU W, et al. A federated data-driven evolutionary algorithm[J]. Knowledge-Based Systems, 2021, 233: 107532. 10.1016/j.knosys.2021.107532 |
16 | ZHU H, JIN Y. Real-time federated evolutionary neural architecture search[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(2): 364-378. 10.1109/tevc.2021.3099448 |
17 | LIU Q, YAN Y, LIGETI P, et al. A secure federated data-driven evolutionary multi-objective optimization algorithm[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 191-205. 10.1109/tetci.2023.3313555 |
18 | GUO X-Q, CHEN W-N, WEI F-F, et al. Edge-cloud co‑evolutionary algorithms for distributed data-driven optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53(10): 6598-6611. 10.1109/tcyb.2022.3219452 |
19 | MORÁN-FERNÁNDEZ L, BOLÓN-CANEDO V, ALONSO-BETANZOS A. Centralized vs. distributed feature selection methods based on data complexity measures[J]. Knowledge-Based Systems, 2017, 117: 27-45. 10.1016/j.knosys.2016.09.022 |
20 | RAHI K H, SINGH H K, RAY T. Partial evaluation strategies for expensive evolutionary constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1103-1117. 10.1109/tevc.2021.3078486 |
21 | GIOVANNI DE G, MUNDO D, MALETTA C, et al. Multi-objective optimization of a vehicle body by combining gradient-based methods and vehicle concept modelling[J]. Case Studies in Mechanical Systems and Signal Processing, 2015, 1: 1-7. 10.1016/j.csmssp.2015.06.002 |
22 | WEI F-F, CHEN W-N, ZHANG J. A hybrid regressor and classifier-assisted evolutionary algorithm for expensive optimization with incomplete constraint information[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 5071-5083. 10.1109/tsmc.2023.3259947 |
23 | LIU B, ZHANG Q, GIELEN G G E. A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 180-192. 10.1109/tevc.2013.2248012 |
24 | POWELL M J D. The uniform convergence of thin plate spline interpolation in two dimensions[J]. Numerische Mathematik, 1994, 128: 107-128. 10.1007/s002110050051 |
25 | REGIS R G, SHOEMAKER C A. A stochastic radial basis function method for the global optimization of expensive functions[J]. INFORMS Journal on Computing, 2007, 19(4): 497-509. 10.1287/ijoc.1060.0182 |
26 | REGIS R G. Particle swarm with radial basis function surrogates for expensive black-box optimization[J]. Journal of Computational Science, 2014, 5(1): 12-23. 10.1016/j.jocs.2013.07.004 |
27 | STORN R, KENNETH P. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359. |
28 | WANG W, LIU H-L, CHEN TAN KAY, et al. A surrogate-assisted differential evolution algorithm for high-dimensional expensive optimization problems[J]. IEEE Transactions on Cybernetics, 2023, 53(4): 2685-2697. 10.1109/tcyb.2022.3175533 |
29 | WANG Y, YIN D-Q, YANG S, et al. Global and local surrogate-assisted differential evolution for expensive constrained optimization problems with inequality constraints[J]. IEEE Transactions on Cybernetics, 2019, 49(5): 1642-1656. 10.1109/tcyb.2018.2809430 |
30 | WANG B-C, LI H-X, LI J-P, et al. Composite differential evolution for constrained evolutionary optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1482-1495. 10.1109/tsmc.2018.2807785 |
31 | STEIN M. Large sample properties of simulations using Latin hypercube sampling[J]. Technometrics, 1987, 29(2): 143-151. 10.1080/00401706.1987.10488205 |
32 | LI J-Y, ZHAN Z-H, WANG H, et al. Data-driven evolutionary algorithm with perturbation-based ensemble surrogates[J]. IEEE Transactions on Cybernetics, 2021, 51(8): 3925-3937. 10.1109/tcyb.2020.3008280 |
33 | 季新芳,张勇,巩敦卫,等.异构集成代理辅助的区间多模态粒子群优化算法[J/OL].自动化学报,2021,45(x):1-23 [2023-12-05]. . 10.16383/j.aas.c210223 |
JI X F, ZAHNG Y, GONG D W, et al. Interval multimodal particle swarm optimization algorithm assisted by heterogeneous ensemble surrogate[J/OL]. Acta Automatica Sinica, 2021, 45(x): 1-23 [2023-12-05]. . 10.16383/j.aas.c210223 | |
34 | DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66. 10.1109/4235.585892 |
35 | CHEN W-N, ZHANG J, CHUNG H S H, et al. A novel set-based particle swarm optimization method for discrete optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(2): 278-300. 10.1109/tevc.2009.2030331 |
36 | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks. Piscataway: IEEE, 1995: 1942-1948. 10.1109/ICNN.1995.488968 |
37 | VANNESCHI L, CASTELLI M, SILVA S. A survey of semantic methods in genetic programming[J]. Genetic Programming and Evolvable Machines, 2014, 15(2): 195-214. 10.1007/s10710-013-9210-0 |
38 | WEI F-F, CHEN W-N, YANG Q, et al. A classifier-assisted level-based learning swarm optimizer for expensive optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(2): 219-233. 10.1109/tevc.2020.3017865 |
39 | PILLAI A S, SINGH K, SARAVANAN V, et al. A genetic algorithm-based method for optimizing the energy consumption and performance of multiprocessor systems[J]. Soft Computing, 2018, 22(10): 3271-3285. 10.1007/s00500-017-2789-y |
40 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. 10.1109/4235.996017 |
41 | REGIS R G. Evolutionary programming for high-dimensional constrained expensive black-box optimization using radial basis functions[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 326-347. 10.1109/tevc.2013.2262111 |
42 | HANDOKO S D, KWOH C K, ONG Y S. Feasibility structure modeling: an effective chaperone for constrained memetic algorithms[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(5): 740-758. 10.1109/tevc.2009.2039141 |
43 | LIANG J J, RUNARSSON T P, MEZURA-MONTES E, et al. Problem definitions and evaluation criteria for the CEC 2006 special session on real-parameter optimization[J]. Journal of Applied Mechanics, 2006, 41(8): 1-24. |
44 | MALLIPEDDI R, SUGANTHAN P N. Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization[R/OL]. [2023-11-10]. . |
45 | LIU B, ZHANG Q, GIELEN G. A surrogate-model-assisted evolutionary algorithm for computationally expensive design optimization problems with inequality constraints[J]. Simulation-Driven Modeling and Optimization, 2016, 153: 347-370. 10.1007/978-3-319-27517-8_14 |
46 | LI G, ZHANG Q. Multiple penalties and multiple local surrogates for expensive constrained optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 769-778. 10.1109/tevc.2021.3066606 |
47 | DONG H, WANG P, FU C, et al. Kriging-assisted Teaching-Learning-Based Optimization (KTLBO) to solve computationally expensive constrained problems[J]. Information Sciences, 2021, 556: 404-435. 10.1016/j.ins.2020.09.073 |
[1] | Xiaofang LIU, Jun ZHANG. Probability-driven dynamic multiobjective evolutionary optimization for multi-agent cooperative scheduling [J]. Journal of Computer Applications, 2024, 44(5): 1372-1377. |
[2] | Yawei HUANG, Xuezhong QIAN, Wei SONG. Improved differential evolution algorithm based on dual-archive population size adaptive method [J]. Journal of Computer Applications, 2024, 44(12): 3844-3853. |
[3] | Yuntao ZHAO, Wanqi XIE, Weigang LI, Jiaming HU. Robot hand-eye calibration algorithm based on covariance matrix adaptation evolutionary strategy [J]. Journal of Computer Applications, 2023, 43(10): 3225-3229. |
[4] | Qingqing NIE, Dingsheng WAN, Yuelong ZHU, Zhijia LI, Cheng YAO. Hydrological model based on temporal convolutional network [J]. Journal of Computer Applications, 2022, 42(6): 1756-1761. |
[5] | Feifan SHI, Xuhua SHI. Adaptive reference vector based constrained multi-objective evolutionary algorithm [J]. Journal of Computer Applications, 2022, 42(2): 542-549. |
[6] | Rongrong DAI, Honghui LI, Xueliang FU. Data center flow scheduling mechanism based on differential evolution and ant colony optimization algorithm [J]. Journal of Computer Applications, 2022, 42(12): 3863-3869. |
[7] | XI Yarui, QIAO Zhiwei, WEN Jing, ZHANG Yanjiao, YANG Wenjing, YAN Huiwen. High order TV image reconstruction algorithm based on Chambolle-Pock algorithm framework [J]. Journal of Computer Applications, 2020, 40(6): 1793-1798. |
[8] | SHI Xiaoqian, CHEN Qidong, SUN Jun, MAO Zhongjie. Adaptive distribution based quantum-behaved particle swarm optimization algorithm for engineering constrained optimization problem [J]. Journal of Computer Applications, 2020, 40(5): 1382-1388. |
[9] | ZHANG Xin, ZOU Dexuan, SHEN Xin. Hybrid two-norm particle swarm optimization algorithm with crossover term [J]. Journal of Computer Applications, 2018, 38(8): 2148-2156. |
[10] | LIU Bao, DONG Minggang, JING Chao. Multi-objective differential evolution algorithm with improved ranking-based mutation [J]. Journal of Computer Applications, 2018, 38(8): 2157-2163. |
[11] | YUAN Yichuan, YANG Zhou, LUO Tingxing, QIN Jin. Multi-population-based competitive differential evolution algorithm for dynamic optimization problem [J]. Journal of Computer Applications, 2018, 38(5): 1254-1260. |
[12] | LI Jiadi, MA Chi, LI Dequan, WANG Junya. Distributed quantized subgradient optimization algorithm for multi-agent switched networks [J]. Journal of Computer Applications, 2018, 38(2): 509-515. |
[13] | LI Xiaowen, YUAN Xianghui, ZHOU Chunxiang. Optimal line-shape parameter estimation algorithm of orbit plane based on inertial angle measurement [J]. Journal of Computer Applications, 2016, 36(12): 3499-3504. |
[14] | LI Kangshun, ZUO Lei, LI Wei. Novel differential evolution algorithm based on simplex-orthogonal experimental design [J]. Journal of Computer Applications, 2016, 36(1): 143-149. |
[15] | LONG Wen, ZHAO Dongquan, XU Songjin. Improved grey wolf optimization algorithm for constrained optimization problem [J]. Journal of Computer Applications, 2015, 35(9): 2590-2595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||