Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1324-1329.DOI: 10.11772/j.issn.1001-9081.2021030508
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Received:
2021-04-06
Revised:
2021-06-18
Accepted:
2021-06-21
Online:
2022-06-11
Published:
2022-05-10
Contact:
Yongguo LIU
About author:
YANG Shigang,born in 1998,M. S. candidate. His research interests include text classification.Supported by:
通讯作者:
刘勇国
作者简介:
杨世刚(1998—),,男,四川广安人,硕士研究生,主要研究方向:文本分类;CLC Number:
Shigang YANG, Yongguo LIU. Short text classification method by fusing corpus features and graph attention network[J]. Journal of Computer Applications, 2022, 42(5): 1324-1329.
杨世刚, 刘勇国. 融合语料库特征与图注意力网络的短文本分类方法[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1324-1329.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030508
数据集 | 训练集样本数 | 测试集样本数 | 类别数 | 平均长度 |
---|---|---|---|---|
Biomedical | 17 976 | 1 998 | 20 | 7.8 |
Dblp | 61 422 | 20 000 | 6 | 8.5 |
MR | 7 074 | 3 554 | 2 | 20.4 |
SST1 | 9 600 | 2 210 | 5 | 18.4 |
SST2 | 7 770 | 1 821 | 2 | 18.5 |
TREC | 5 394 | 500 | 6 | 11.3 |
Tab. 1 Dataset information
数据集 | 训练集样本数 | 测试集样本数 | 类别数 | 平均长度 |
---|---|---|---|---|
Biomedical | 17 976 | 1 998 | 20 | 7.8 |
Dblp | 61 422 | 20 000 | 6 | 8.5 |
MR | 7 074 | 3 554 | 2 | 20.4 |
SST1 | 9 600 | 2 210 | 5 | 18.4 |
SST2 | 7 770 | 1 821 | 2 | 18.5 |
TREC | 5 394 | 500 | 6 | 11.3 |
模型 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
Text-CNN | 0.665 7 | 0.766 7 | 0.761 7 | 0.412 7 | 0.810 3 | 0.968 8 | 0.731 0 |
Bi-LSTM | 0.643 6 | 0.752 2 | 0.758 0 | 0.403 6 | 0.806 7 | 0.972 7 | 0.722 8 |
Text-GCN | 0.686 2 | 0.777 7 | 0.763 4 | 0.387 3 | 0.816 6 | 0.906 0 | 0.722 9 |
TL-GNN | 0.666 1 | 0.771 5 | 0.747 0 | 0.382 4 | 0.794 6 | 0.972 0 | 0.722 3 |
STCKA | 0.680 2 | 0.772 4 | 0.767 0 | 0.416 7 | 0.820 7 | 0.972 0 | 0.738 2 |
DE-CNN | 0.652 7 | 0.756 5 | 0.682 0 | 0.418 1 | 0.783 1 | 0.960 9 | 0.708 9 |
Text-ING | 0.693 7 | 0.765 3 | 0.772 3 | 0.451 2 | 0.834 6 | 0.980 0 | 0.749 5 |
NE-GAT | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
Tab. 2 Comparison of test set accuracy of different methods
模型 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
Text-CNN | 0.665 7 | 0.766 7 | 0.761 7 | 0.412 7 | 0.810 3 | 0.968 8 | 0.731 0 |
Bi-LSTM | 0.643 6 | 0.752 2 | 0.758 0 | 0.403 6 | 0.806 7 | 0.972 7 | 0.722 8 |
Text-GCN | 0.686 2 | 0.777 7 | 0.763 4 | 0.387 3 | 0.816 6 | 0.906 0 | 0.722 9 |
TL-GNN | 0.666 1 | 0.771 5 | 0.747 0 | 0.382 4 | 0.794 6 | 0.972 0 | 0.722 3 |
STCKA | 0.680 2 | 0.772 4 | 0.767 0 | 0.416 7 | 0.820 7 | 0.972 0 | 0.738 2 |
DE-CNN | 0.652 7 | 0.756 5 | 0.682 0 | 0.418 1 | 0.783 1 | 0.960 9 | 0.708 9 |
Text-ING | 0.693 7 | 0.765 3 | 0.772 3 | 0.451 2 | 0.834 6 | 0.980 0 | 0.749 5 |
NE-GAT | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
模型 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
GAT | 0.677 2 | 0.774 3 | 0.742 5 | 0.419 5 | 0.806 2 | 0.970 0 | 0.731 6 |
GAT+node | 0.701 2 | 0.780 9 | 0.779 4 | 0.429 4 | 0.828 0 | 0.978 0 | 0.749 5 |
GAT+edge | 0.699 7 | 0.778 4 | 0.771 7 | 0.429 0 | 0.814 2 | 0.974 0 | 0.744 5 |
NE-GAT | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
Tab. 3 Ablation experimental results of each module (accuracy)
模型 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
GAT | 0.677 2 | 0.774 3 | 0.742 5 | 0.419 5 | 0.806 2 | 0.970 0 | 0.731 6 |
GAT+node | 0.701 2 | 0.780 9 | 0.779 4 | 0.429 4 | 0.828 0 | 0.978 0 | 0.749 5 |
GAT+edge | 0.699 7 | 0.778 4 | 0.771 7 | 0.429 0 | 0.814 2 | 0.974 0 | 0.744 5 |
NE-GAT | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
邻居数 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
1 | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
2 | 0.702 2 | 0.783 4 | 0.782 2 | 0.451 1 | 0.832 5 | 0.978 0 | 0.754 9 |
3 | 0.692 7 | 0.783 3 | 0.778 8 | 0.447 5 | 0.845 7 | 0.976 0 | 0.754 0 |
4 | 0.700 7 | 0.781 3 | 0.778 0 | 0.444 8 | 0.845 7 | 0.968 0 | 0.753 1 |
5 | 0.702 7 | 0.781 9 | 0.776 0 | 0.446 2 | 0.839 1 | 0.970 0 | 0.752 7 |
Tab. 4 Test accuracy comparison of different numbers of neighbors
邻居数 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
1 | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
2 | 0.702 2 | 0.783 4 | 0.782 2 | 0.451 1 | 0.832 5 | 0.978 0 | 0.754 9 |
3 | 0.692 7 | 0.783 3 | 0.778 8 | 0.447 5 | 0.845 7 | 0.976 0 | 0.754 0 |
4 | 0.700 7 | 0.781 3 | 0.778 0 | 0.444 8 | 0.845 7 | 0.968 0 | 0.753 1 |
5 | 0.702 7 | 0.781 9 | 0.776 0 | 0.446 2 | 0.839 1 | 0.970 0 | 0.752 7 |
层数 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
1 | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
2 | 0.694 2 | 0.778 4 | 0.783 1 | 0.421 7 | 0.835 8 | 0.982 0 | 0.749 2 |
3 | 0.692 2 | 0.785 7 | 0.783 6 | 0.430 8 | 0.838 0 | 0.986 0 | 0.752 7 |
4 | 0.697 2 | 0.776 5 | 0.780 8 | 0.446 2 | 0.823 7 | 0.984 0 | 0.751 4 |
5 | 0.699 7 | 0.776 1 | 0.778 0 | 0.425 8 | 0.837 5 | 0.986 0 | 0.750 5 |
Tab. 5 Test accuracy comparison of different numbers of layers
层数 | Biomedical | Dblp | MR | SST1 | SST2 | TREC | AVG |
---|---|---|---|---|---|---|---|
1 | 0.703 2 | 0.783 2 | 0.780 2 | 0.446 6 | 0.835 3 | 0.980 0 | 0.754 8 |
2 | 0.694 2 | 0.778 4 | 0.783 1 | 0.421 7 | 0.835 8 | 0.982 0 | 0.749 2 |
3 | 0.692 2 | 0.785 7 | 0.783 6 | 0.430 8 | 0.838 0 | 0.986 0 | 0.752 7 |
4 | 0.697 2 | 0.776 5 | 0.780 8 | 0.446 2 | 0.823 7 | 0.984 0 | 0.751 4 |
5 | 0.699 7 | 0.776 1 | 0.778 0 | 0.425 8 | 0.837 5 | 0.986 0 | 0.750 5 |
1 | ALSMADI I M, GAN K H. Review of short-text classification [J]. International Journal of Web Information Systems, 2019, 15(2): 155-182. 10.1108/ijwis-12-2017-0083 |
2 | 范国凤,刘璟,姚绍文,等.基于语义依存分析的图网络文本分类模型[J].计算机应用研究,2020,37(12):3594-3598. 10.19734/j.issn.1001-3695.2019.08.0522 |
FAN G F, LIU J, YAO S W, et al. Text classification model with graph network based on semantic dependency parsing [J]. Application Research of Computers, 2020, 37(12): 3594-3598. 10.19734/j.issn.1001-3695.2019.08.0522 | |
3 | TAO H Q, TONG S W, ZHAO H K, et al. A radical-aware attention-based model for Chinese text classification [C]// Proceedings of the 2019 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 5125-5132. 10.1609/aaai.v33i01.33015125 |
4 | XU J Y, CAI Y, WU X, et al. Incorporating context-relevant concepts into convolutional neural networks for short text classification [J]. Neurocomputing, 2020, 386: 42-53. 10.1016/j.neucom.2019.08.080 |
5 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL].[2021-02-10]. . |
6 | LI Z, REN T, MA X Q, et al. Identifying influential spreaders by gravity model [J]. Scientific Reports, 2019, 9: Article No.8387. 10.1038/s41598-019-44930-9 |
7 | DILRUKSHI I, DE ZOYSA K. A feature selection method for twitter news classification [J]. International Journal of Machine Learning and Computing, 2014, 4(4): 365-370. 10.7763/ijmlc.2014.v4.438 |
8 | KIM Y. Convolutional neural networks for sentence classification [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1746-1751. 10.3115/v1/d14-1181 |
9 | LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning [C]// Proceedings of the 2016 25th International Joint Conference on Artificial Intelligence. California: IJCAI Organization, 2016: 2873-2879. 10.18653/v1/d16-1012 |
10 | VASWANI A, HAZEER N S, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017:6000-6010. 10.1016/s0262-4079(17)32358-8 |
11 | ZENG J C, LI J, SONG Y, et al. Topic memory networks for short text classification [C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3120-3131. 10.18653/v1/d18-1351 |
12 | ZHANG H D, NI W C, ZHAO M J, et al. Cluster-gated convolutional neural network for short text classification [C]// Proceedings of the 2019 23rd Conference on Computational Natural Language Learning. Stroudsburg: ACL, 2019: 1002-1011. 10.18653/v1/k19-1094 |
13 | 张小川,戴旭尧,刘璐,等.融合多头自注意力机制的中文短文本分类模型[J].计算机应用,2020,40(12):3485-3489. 10.11772/j.issn.1001-9081.2020060914 |
ZHANG X C, DAI X Y, LIU L, et al. Chinese short text classification model with multi-head self-attention mechanism [J]. Journal of Computer Applications, 2020, 40(12): 3485-3489. 10.11772/j.issn.1001-9081.2020060914 | |
14 | 杨朝强,邵党国,杨志豪,等.多特征融合的中文短文本分类模型[J].小型微型计算机系统,2020,41(7):1421-1426. 10.3969/j.issn.1000-1220.2020.07.013 |
YANG Z Q, SHAO D G, YANG Z H, et al. Chinese short text classification model with multi-feature fusion [J]. Journal of Chinese Computer Systems, 2020, 41(7): 1421-1426. 10.3969/j.issn.1000-1220.2020.07.013 | |
15 | CHEN J D, HU Y Z, LIU J P, et al. Deep short text classification with knowledge powered attention [C]// Proceedings of the 2019 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 6252-6259. 10.1609/aaai.v33i01.33016252 |
16 | 郑诚,董春阳,黄夏炎.基于BTM图卷积网络的短文本分类方法[J].计算机工程与应用,2021,57(4):155-160. 10.3778/j.issn.1002-8331.1912-0051 |
ZHENG C, DONG C Y, HUANG X Y. Short text classification method based on BTM graph convolutional network [J]. Computer Engineering and Applications, 2021, 57(4): 155-160. 10.3778/j.issn.1002-8331.1912-0051 | |
17 | HU L M, YANG T C, SHI C, et al. Heterogeneous graph attention networks for semi-supervised short text classification [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 4821-4830. 10.18653/v1/d19-1488 |
18 | YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification [C]// Proceedings of the 2019 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 7370-7377. 10.1609/aaai.v33i01.33017370 |
19 | LIU X E, YOU X X, ZHANG X, et al. Tensor graph convolutional networks for text classification [C]// Proceedings of the 2020 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 8409-8416. 10.1609/aaai.v34i05.6359 |
20 | HUANG L Z, MA D H, LI S J, et al. Text level graph neural network for text classification [C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 3444-3450. 10.18653/v1/d19-1345 |
21 | ZHANG Y F, YU X L, CUI Z Y, et al. Every document owns its structure: inductive text classification via graph neural networks [C]// Proceedings of the 2020 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 334-339. 10.18653/v1/2020.acl-main.31 |
22 | LI Y J, ZEMEL R, BROCKSCHMIDT M, et al. Gated graph sequence neural networks [EB/OL]. [2021-02-20]. . |
23 | 暨南大学.一种基于图注意力网络的中文短文本分类方法:中国,202011141057.5[P].2021-03-02. 10.1055/s-0041-1729519 |
Jinan University. A Chinese short text classification method based on graph attention networks: CN, 202011141057.5 [P]. 2021-03-02. 10.1055/s-0041-1729519 | |
24 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-02-20]. . |
25 | PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. 10.3115/v1/d14-1162 |
[1] | Tianci KE, Jianhua LIU, Shuihua SUN, Zhixiong ZHENG, Zijie CAI. Aspect-level sentiment analysis model combining strong association dependency and concise syntax [J]. Journal of Computer Applications, 2024, 44(6): 1786-1795. |
[2] | Lei GUO, Zhen JIA, Tianrui LI. Relational and interactive graph attention network for aspect-level sentiment analysis [J]. Journal of Computer Applications, 2024, 44(3): 696-701. |
[3] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[4] | Linqin WANG, Te ZHANG, Zhihong XU, Yongfeng DONG, Guowei YANG. Fusing entity semantic and structural information for knowledge graph reasoning [J]. Journal of Computer Applications, 2024, 44(11): 3371-3378. |
[5] | Wenjuan JIANG, Yi GUO, Jiaojiao FU. Reasoning question answering model of complex temporal knowledge graph with graph attention [J]. Journal of Computer Applications, 2024, 44(10): 3047-3057. |
[6] | Zhixiong ZHENG, Jianhua LIU, Shuihua SUN, Ge XU, Honghui LIN. Aspect-based sentiment analysis model fused with multi-window local information [J]. Journal of Computer Applications, 2023, 43(6): 1796-1802. |
[7] | Jinyun WANG, Yang XIANG. Text semantic de-duplication algorithm based on keyword graph representation [J]. Journal of Computer Applications, 2023, 43(10): 3070-3076. |
[8] | Chun GAO, Mengling WANG. Highway traffic flow prediction based on feature fusion graph attention network [J]. Journal of Computer Applications, 2023, 43(10): 3114-3120. |
[9] | Shoulong JIAO, Youxiang DUAN, Qifeng SUN, Zihao ZHUANG, Chenhao SUN. Knowledge representation learning method incorporating entity description information and neighbor node features [J]. Journal of Computer Applications, 2022, 42(4): 1050-1056. |
[10] | Haitao XUE, Li WANG, Yanjie YANG, Biao LIAN. Rumor detection model based on user propagation network and message content [J]. Journal of Computer Applications, 2021, 41(12): 3540-3545. |
[11] | WANG Yu, XU Jianmin. Hot new word discovery applied for detection of network hot news [J]. Journal of Computer Applications, 2020, 40(12): 3513-3519. |
[12] | XING Jinbiao, CUI Chaoyuan, SUN Bingyu, SONG Liangtu. Microblog advertisement filtering method based on classification feature extension of latent Dirichlet allocation [J]. Journal of Computer Applications, 2016, 36(8): 2257-2261. |
[13] | LIU Shengnan, NING Jifeng. Super-pixel based pointwise mutual information boundary detection algorithm [J]. Journal of Computer Applications, 2016, 36(8): 2296-2300. |
[14] | YANG Tian-ping ZHU Zheng-yu. Algorithm for Chinese short-text classification using concept description [J]. Journal of Computer Applications, 2012, 32(12): 3335-3338. |
[15] | . Method for Chinese short text classification based on feature extension [J]. Journal of Computer Applications, 2009, 29(3): 843-845. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||