[1] 林诗洁,董晨,陈明志,等.新型群智能优化算法综述[J].计算机工程与应用,2018,54(12):1-9.(LIN S J, DONG C, CHEN M Z, et al. Summary of new group intelligent optimization algorithms[J]. Computer Engineering and Applications, 2018, 54(12):1-9.) [2] 程述立,汪烈军,秦继伟,等.群智能算法优化的结合熵的最大类间方差法与脉冲耦合神经网络融合的图像分割算法[J].计算机应用,2017,37(12):3528-3535.(CHENG S L, WANG L J, QIN J W, et al. Image segmentation algorithm based on fusion of group intelligent algorithm optimized OTSU-entropy and pulse coupled neural network[J]. Journal of Computer Applications, 2017, 37(12):3528-3535.) [3] SALEEM M, di CARO G A, FAROOQ M. Swarm intelligence based routing protocol for wireless sensor networks:survey and future directions[J]. Information Sciences, 2010, 181(20):4597-4624. [4] QU M. Lunar soft-landing trajectory of mechanics optimization based on the improved ant colony algorithm[J]. Applied Mechanics and Materials, 2015, 3748(721):446-449. [5] FAYCAL H, ANIS L, ANIS S, et al. A new images segmentation method based on modified particle swarm optimization algorithm[J]. International Journal of Imaging Systems and Technology, 2013, 23(3):265-271. [6] PAN Q-K. An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling[J]. European Journal of Operational Research, 2016, 250(3):702-714. [7] 肖振久,孙健,王永滨,等.基于果蝇优化算法的小波域数字水印算法[J].计算机应用,2015,35(9):2527-2530.(XIAO Z J, SUN J, WANG Y B, et al. Wavelet domain digital watermarking method based on fruit fly optimization algorithm[J]. Journal of Computer Applications, 2015, 35(9):2527-2530.) [8] 刘宝,董明刚,敬超.改进的排序变异多目标差分进化算法[J].计算机应用,2018,38(8):2157-2163.(LIU B, DONG M G, JING C. Multi-objective differential evolution algorithm with improved ranking-based mutation[J]. Journal of Computer Applications, 2018, 38(8):2157-2163.) [9] GANDOMI A H, ALAVI A H. Krill herd:a new bio-inspired optimization algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):4831-4845. [10] HOFMANN E E, HASKELL A G E, KLINCK J M, et al. Lagrangian modelling studies of Antarctic krill (euphausia superba) swarm formation[J]. ICES Journal of Marine Science, 2004, 61(4):617-631. [11] WANG G-G, GANDOMI A H, ALAVI A H, et al. Hybrid krill herd algorithm with differential evolution for global numerical optimization[J]. Neural Computing and Applications, 2014, 25(2):297-308. [12] LI J, TANG Y, HUA C, et al. An improved krill herd algorithm:krill herd with linear decreasing step[J]. Applied Mathematics and Computation, 2014, 234(10):356-367. [13] WANG G-G, GUO L, GANDOMI A H, et al. Chaotic krill herd algorithm[J]. Information Sciences, 2014, 274:17-34. [14] WANG G-G, GANDOMI A H, ALAVI A H, et al. A hybrid method based on krill herd and quantum-behaved particle swarm optimization[J]. Neural Computing and Applications, 2016, 27(4):989-1006. [15] 刘沛,高岳林,郭伟.基于自然选择和随机扰动的改进磷虾群算法[J].小型微型计算机系统,2017,38(8):1845-1849.(LIU P, GAO Y L, GUO W. Improved krill herd algorithm based on natural selection and random disturbance[J]. Journal of Chinese Computer Systems, 2017, 38(8):1845-1849.) |