1 |
李晓磊. 一种新型的智能优化方法——人工鱼群算法[D]. 杭州:浙江大学,2003: 22-40.
|
|
LI X L. A new intelligent optimization method—Artificial fish swarm algorithm[D]. Hangzhou: Zhejiang University, 2003: 22-40.
|
2 |
ZHENG Z X, LI J Q, DUAN P Y. Optimal chiller loading by improved artificial fish swarm algorithm for energy saving[J]. Mathematics and Computers in Simulation, 2018, 155: 227-243. 10.1016/j.matcom.2018.04.013
|
3 |
LI G, LIU Q, YANG Y, et al. An improved differential evolution based artificial fish swarm algorithm and its application to AGV path planning problems[C]// Proceedings of the 2017 36th Chinese Control Conference. Piscataway: IEEE, 2017: 2556-2561. 10.23919/chicc.2017.8027746
|
4 |
CHEN Y M, ZHU Q X, XU H R. Finding rough set reducts with fish swarm algorithm[J]. Knowledge-Based Systems, 2015, 81:22-29. 10.1016/j.knosys.2015.02.002
|
5 |
EL-SAID, AHMED S. Image quantization using improved artificial fish swarm algorithm[J]. Soft Computing, 2015, 19(9): 2667-2679. 10.1007/s00500-014-1436-0
|
6 |
MA C, HE R. Green wave traffic control system optimization based on adaptive genetic-artificial fish swarm algorithm[J]. Neural Computing and Applications, 2019, 31(7): 2073-2083. 10.1007/s00521-015-1931-y
|
7 |
袁娜, 史昕, 赵祥模. 基于改进人工鱼群算法的车辆轨迹规划方法[J], 计算机应用, 2018,38(10): 3030-3035.
|
|
YUAN N, SHI X, ZHAO X M. Vehicle trajectory planning method based on improved artificial fish swarm algorithm[J]. Computer Application, 2018,38(10): 3030-3035.
|
8 |
ZHU X, NI Z, NI L, et al. Improved discrete artificial fish swarm algorithm combined with margin distance minimization for ensemble pruning[J]. Computers & Industrial Engineering, 2019, 128: 32-46. 10.1016/j.cie.2018.12.021
|
9 |
ZHANG Z, WANG K, ZHU L, et al. A Pareto improved artificial fish swarm algorithm for solving a multi-objective fuzzy disassembly line balancing problem[J]. Expert Systems with Applications, 2017, 86: 165-176. 10.1016/j.eswa.2017.05.053
|
10 |
DUAN Q C, MAO M X, DUAN P, et al. An improved artificial fish swarm algorithm optimized by particle swarm optimization algorithm with extended memory[J]. Kybernetes, 2016, 45(2): 210-222. 10.1108/K-09-2014-0198
|
11 |
TAN W H, MOHAMAD-SALEH J. Normative Fish Swarm Algorithm (NFSA) for optimization[J]. Soft Computing, 2020,24: 2083-2099. 10.1007/s00500-019-04040-0
|
12 |
WU Y, GAO X-Z, ZENGER K. Knowledge-based artificial fish-swarm algorithm[C]// Proceedings of the 2010 13th IEEE International Conference on Computational Science and Engineering. Piscataway: IEEE, 2010: 14705-14710. 10.1109/cse.2010.49
|
13 |
YAZDANI D, TOOSI A N, MEYBODI M R. Fuzzy adaptive artificial fish swarm algorithm[C]// AI 2010: Advances in Artificial Intelligence. Berlin: Springer, 2010: 334-343. 10.1007/978-3-642-17432-2_34
|
14 |
BAGLEY J D. The Behavior of Adaptive Systems Which Employ Genetic and Correlation Algorithms. Technical Report[M]. Ann Arbor, USA: Michigan University, 1967: 41-63.
|
15 |
郑延斌, 刘晶晶, 王宁. 基于社会学习机制的改进人工鱼群算法[J]. 计算机应用, 2013,33(5): 1305-1307. 10.3724/SP.J.1087.2013.01305
|
|
ZHENG Y B, LIU J J, WANG N. Improved artificial fish swarm algorithm based on social learning mechanism[J]. Journal of Computer Application, 2013,33(5): 1305-1307. 10.3724/SP.J.1087.2013.01305
|
16 |
AZIZI R. Empirical study of artificial fish swarm algorithm[J]. International Journal of Computing, Communications and Networking, 2014,3(1):1-7.
|
17 |
HUANG Z H, CHEN Y, CHEN Y D. An improved artificial fish swarm algorithm based on hybrid behavior selection[J]. International Journal of Control and Automation, 2013, 6(5):103-116. 10.14257/ijca.2013.6.5.10
|
18 |
ZHANG C, ZHANG F M, LI F, et al. Improved artificial fish swarm algorithm[C]// Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications. Piscataway: IEEE, 2014:748-753. 10.1109/iciea.2014.6931262
|
19 |
MAO M X, DUAN Q C, DUAN P, et al. Comprehensive improvement of artificial fish swarm algorithm for global MPPT in PV system under partial shading conditions[J]. Transactions of the Institute of Measurement & Control, 2017, 40(7): 2178-2199. 10.1177/0142331217697374
|