Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2450-2460.DOI: 10.11772/j.issn.1001-9081.2021061083
• Data science and technology • Previous Articles Next Articles
Yanwei CHEN1,2, Xingwang ZHAO1,2()
Received:
2021-06-24
Revised:
2021-12-07
Accepted:
2021-12-17
Online:
2022-01-25
Published:
2022-08-10
Contact:
Xingwang ZHAO
About author:
CHEN Yanwei, born in 1996, M. S. candidate. His research interests include data mining, machine learning.Supported by:
通讯作者:
赵兴旺
作者简介:
陈延伟(1996—),男,山东潍坊人,硕士研究生,CCF会员,主要研究方向:数据挖掘、机器学习;基金资助:
CLC Number:
Yanwei CHEN, Xingwang ZHAO. Varied density clustering algorithm based on border point detection[J]. Journal of Computer Applications, 2022, 42(8): 2450-2460.
陈延伟, 赵兴旺. 基于边界点检测的变密度聚类算法[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2450-2460.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061083
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Flame[ | 240 | 2 | 2 |
Jain[ | 373 | 2 | 2 |
Aggregation[ | 788 | 2 | 7 |
D31[ | 3 100 | 2 | 31 |
T4[ | 8 000 | 2 | 6 |
T8[ | 8 000 | 2 | 8 |
S1 | 800 | 2 | 3 |
S2 | 8 000 | 2 | 3 |
Tab. 1 Description of artificial datasets
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Flame[ | 240 | 2 | 2 |
Jain[ | 373 | 2 | 2 |
Aggregation[ | 788 | 2 | 7 |
D31[ | 3 100 | 2 | 31 |
T4[ | 8 000 | 2 | 6 |
T8[ | 8 000 | 2 | 8 |
S1 | 800 | 2 | 3 |
S2 | 8 000 | 2 | 3 |
算法 | Flame | Jain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.515 8 | 0.803 5 | 0.602 4 | 0.466 7 | 2 | 0.576 7 | 0.527 4 | 0.886 7 | 0.882 0 | 2 |
DBSCAN | 0.938 8 | 0.866 5 | 0.983 1 | 0.987 5 | 0.09/8 | 0.975 8 | 0.928 1 | 0.987 3 | 1.0000 | 0.08/2 |
DPCA | 0.988 1 | 0.970 6 | 0.987 9 | 0.991 6 | 2.8 | 0.514 6 | 0.505 0 | 0.868 1 | 0.860 6 | 2 |
CLUB | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 9~19 | 0.713 3 | 0.553 5 | 0.838 7 | 0.943 7 | 7 |
BP | 0.955 0 | 0.908 0 | 0.979 1 | 0.991 7 | 无 | 0.230 2 | 0.451 3 | 0.529 3 | 0.924 9 | 无 |
VDCBD | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 9~15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 19 |
算法 | Aggregation | D31 | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.776 7 | 0.852 1 | 0.860 5 | 0.904 8 | 7 | 0.9535 | 0.9676 | 0.977 1 | 0.966 0 | 31 |
DBSCAN | 0.977 9 | 0.968 1 | 0.989 7 | 0.991 1 | 0.04/6 | 0.807 8 | 0.913 2 | 0.881 4 | 0.828 7 | 0.04/38 |
DPCA | 0.991 3 | 0.986 9 | 0.994 9 | 0.994 9 | 0.14 | 0.934 5 | 0.956 8 | 0.967 4 | 0.967 4 | 0.6 |
CLUB | 0.984 3 | 0.978 1 | 0.993 6 | 0.993 6 | 26 | 0.939 6 | 0.959 3 | 0.970 0 | 0.970 3 | 25~26 |
BP | 0.992 7 | 0.988 3 | 0.944 3 | 0.996 2 | 无 | 0.908 6 | 0.939 1 | 0.911 6 | 0.938 4 | 无 |
VDCBD | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 25 | 0.947 8 | 0.965 7 | 0.9790 | 0.9791 | 31 |
Tab. 2 Clustering results of 6 algorithms on 4 artificial datasets
算法 | Flame | Jain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.515 8 | 0.803 5 | 0.602 4 | 0.466 7 | 2 | 0.576 7 | 0.527 4 | 0.886 7 | 0.882 0 | 2 |
DBSCAN | 0.938 8 | 0.866 5 | 0.983 1 | 0.987 5 | 0.09/8 | 0.975 8 | 0.928 1 | 0.987 3 | 1.0000 | 0.08/2 |
DPCA | 0.988 1 | 0.970 6 | 0.987 9 | 0.991 6 | 2.8 | 0.514 6 | 0.505 0 | 0.868 1 | 0.860 6 | 2 |
CLUB | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 9~19 | 0.713 3 | 0.553 5 | 0.838 7 | 0.943 7 | 7 |
BP | 0.955 0 | 0.908 0 | 0.979 1 | 0.991 7 | 无 | 0.230 2 | 0.451 3 | 0.529 3 | 0.924 9 | 无 |
VDCBD | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 9~15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 19 |
算法 | Aggregation | D31 | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.776 7 | 0.852 1 | 0.860 5 | 0.904 8 | 7 | 0.9535 | 0.9676 | 0.977 1 | 0.966 0 | 31 |
DBSCAN | 0.977 9 | 0.968 1 | 0.989 7 | 0.991 1 | 0.04/6 | 0.807 8 | 0.913 2 | 0.881 4 | 0.828 7 | 0.04/38 |
DPCA | 0.991 3 | 0.986 9 | 0.994 9 | 0.994 9 | 0.14 | 0.934 5 | 0.956 8 | 0.967 4 | 0.967 4 | 0.6 |
CLUB | 0.984 3 | 0.978 1 | 0.993 6 | 0.993 6 | 26 | 0.939 6 | 0.959 3 | 0.970 0 | 0.970 3 | 25~26 |
BP | 0.992 7 | 0.988 3 | 0.944 3 | 0.996 2 | 无 | 0.908 6 | 0.939 1 | 0.911 6 | 0.938 4 | 无 |
VDCBD | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 25 | 0.947 8 | 0.965 7 | 0.9790 | 0.9791 | 31 |
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Wine | 178 | 13 | 3 |
Leaf | 340 | 16 | 30 |
Ecoli | 336 | 8 | 8 |
Seeds | 210 | 7 | 3 |
Segmentation | 2 | 19 | 7 |
Wall-Following | 5 | 24 | 2 |
Pendigits | 10 | 16 | 10 |
Tab. 3 Description of real datasets
数据集 | 样本数 | 特征数 | 类别数 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Wine | 178 | 13 | 3 |
Leaf | 340 | 16 | 30 |
Ecoli | 336 | 8 | 8 |
Seeds | 210 | 7 | 3 |
Segmentation | 2 | 19 | 7 |
Wall-Following | 5 | 24 | 2 |
Pendigits | 10 | 16 | 10 |
算法 | Iris | Wine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.716 3 | 0.741 9 | 0.885 2 | 0.886 7 | 3 | 0.914 9 | 0.892 6 | 0.996 1 | 0.966 3 | 3 |
DBSCAN | 0.624 6 | 0.663 3 | 0.861 6 | 0.860 0 | 0.13/9 | 0.537 8 | 0.598 2 | 0.805 3 | 0.814 6 | 0.51/23 |
DPCA | 0.885 7 | 0.864 1 | 0.959 9 | 0.960 0 | 0.2 | 0.647 1 | 0.695 9 | 0.865 3 | 0.870 8 | 2 |
CLUB | 0.714 5 | 0.735 8 | 0.868 4 | 0.953 3 | 5 | 0.421 4 | 0.537 4 | 0.716 0 | 0.646 0 | 7 |
BP | 0.558 8 | 0.693 1 | 0.755 4 | 0.680 0 | 无 | 0.350 6 | 0.370 4 | 0.549 6 | 0.634 8 | 无 |
VDCBD | 0.903 4 | 0.870 5 | 0.959 9 | 0.960 0 | 10 | 0.836 8 | 0.825 2 | 0.943 2 | 0.943 2 | 20 |
算法 | Leaf | Ecoli | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.414 7 | 0.726 7 | 0.585 6 | 0.588 2 | 30 | 0.721 6 | 0.689 1 | 0.790 0 | 0.800 6 | 8 |
DBSCAN | 0.220 0 | 0.755 6 | 0.377 2 | 0.962 3 | 0.12/1 | 0.649 1 | 0.586 7 | 0.744 2 | 0.732 1 | 0.32/30 |
DPCA | 0.285 1 | 0.660 6 | 0.441 4 | 0.432 4 | 30 | 0.464 5 | 0.625 2 | 0.714 6 | 0.815 5 | 0.4 |
CLUB | 0.228 8 | 0.670 2 | 0.535 7 | 0.600 | 1 | 0.729 8 | 0.693 5 | 0.785 0 | 0.779 7 | 15 |
BP | 0.156 7 | 0.532 3 | 0.291 7 | 0.235 3 | 无 | 0.663 5 | 0.634 7 | 0.771 4 | 0.732 1 | 无 |
VDCBD | 0.420 3 | 0.744 3 | 0.592 1 | 0.661 8 | 3 | 0.769 9 | 0.744 8 | 0.835 5 | 0.839 3 | 7 |
算法 | Seeds | Segmentation | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.704 8 | 0.674 3 | 0.890 5 | 0.890 5 | 3 | 0.500 4 | 0.637 2 | 0.683 4 | 0.709 5 | 7 |
DBSCAN | 0.584 3 | 0.578 7 | 0.831 5 | 0.838 1 | 0.34/43 | 0.526 6 | 0.667 2 | 0.706 5 | 0.747 6 | 1.38/5 |
DPCA | 0.707 5 | 0.679 6 | 0.888 3 | 0.890 5 | 0.7 | 0.502 3 | 0.625 8 | 0.700 8 | 0.671 4 | 1.5 |
CLUB | 0.750 5 | 0.705 4 | 0.905 0 | 0.914 3 | 5 | 0.502 7 | 0.625 4 | 0.698 2 | 0.680 9 | 7 |
BP | 0.616 8 | 0.609 0 | 0.743 2 | 0.847 6 | 无 | 0.100 8 | 0.355 0 | 0.425 7 | 0.300 0 | 无 |
VDCBD | 0.769 7 | 0.694 3 | 0.904 2 | 0.904 8 | 14 | 0.539 7 | 0.656 1 | 0.713 9 | 0.738 1 | 11 |
算法 | Wall-Following | Pendigits | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.359 0 | 0.261 9 | 0.800 0 | 0.800 2 | 2 | 0.642 1 | 0.719 6 | 0.765 4 | 0.775 2 | 10 |
DBSCAN | 0.076 0 | 0.155 3 | 0.477 8 | 0.528 2 | 0.77/50 | 0.630 2 | 0.723 6 | 0.747 6 | 0.868 8 | 0.32/1 |
DPCA | 0.051 0 | 0.102 0 | 0.412 2 | 0.479 8 | 0.33 | 0.597 4 | 0.732 2 | 0.738 5 | 0.748 6 | 0.31 |
CLUB | 0.002 0 | 0.219 0 | 0.236 4 | 0.791 2 | 1 | 0.675 0 | 0.785 9 | 0.767 6 | 0.828 5 | 10 |
BP | -0.014 5 | 0.055 3 | 0.478 5 | 0.437 1 | 无 | 0.725 9 | 0.821 4 | 0.757 8 | 0.741 0 | 无 |
VDCBD | 0.066 5 | 0.192 2 | 0.487 1 | 0.564 9 | 14 | 0.666 8 | 0.775 2 | 0.778 6 | 0.850 0 | 7 |
Tab. 4 Clustering results of 6 algorithms on 8 real datasets
算法 | Iris | Wine | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.716 3 | 0.741 9 | 0.885 2 | 0.886 7 | 3 | 0.914 9 | 0.892 6 | 0.996 1 | 0.966 3 | 3 |
DBSCAN | 0.624 6 | 0.663 3 | 0.861 6 | 0.860 0 | 0.13/9 | 0.537 8 | 0.598 2 | 0.805 3 | 0.814 6 | 0.51/23 |
DPCA | 0.885 7 | 0.864 1 | 0.959 9 | 0.960 0 | 0.2 | 0.647 1 | 0.695 9 | 0.865 3 | 0.870 8 | 2 |
CLUB | 0.714 5 | 0.735 8 | 0.868 4 | 0.953 3 | 5 | 0.421 4 | 0.537 4 | 0.716 0 | 0.646 0 | 7 |
BP | 0.558 8 | 0.693 1 | 0.755 4 | 0.680 0 | 无 | 0.350 6 | 0.370 4 | 0.549 6 | 0.634 8 | 无 |
VDCBD | 0.903 4 | 0.870 5 | 0.959 9 | 0.960 0 | 10 | 0.836 8 | 0.825 2 | 0.943 2 | 0.943 2 | 20 |
算法 | Leaf | Ecoli | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.414 7 | 0.726 7 | 0.585 6 | 0.588 2 | 30 | 0.721 6 | 0.689 1 | 0.790 0 | 0.800 6 | 8 |
DBSCAN | 0.220 0 | 0.755 6 | 0.377 2 | 0.962 3 | 0.12/1 | 0.649 1 | 0.586 7 | 0.744 2 | 0.732 1 | 0.32/30 |
DPCA | 0.285 1 | 0.660 6 | 0.441 4 | 0.432 4 | 30 | 0.464 5 | 0.625 2 | 0.714 6 | 0.815 5 | 0.4 |
CLUB | 0.228 8 | 0.670 2 | 0.535 7 | 0.600 | 1 | 0.729 8 | 0.693 5 | 0.785 0 | 0.779 7 | 15 |
BP | 0.156 7 | 0.532 3 | 0.291 7 | 0.235 3 | 无 | 0.663 5 | 0.634 7 | 0.771 4 | 0.732 1 | 无 |
VDCBD | 0.420 3 | 0.744 3 | 0.592 1 | 0.661 8 | 3 | 0.769 9 | 0.744 8 | 0.835 5 | 0.839 3 | 7 |
算法 | Seeds | Segmentation | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.704 8 | 0.674 3 | 0.890 5 | 0.890 5 | 3 | 0.500 4 | 0.637 2 | 0.683 4 | 0.709 5 | 7 |
DBSCAN | 0.584 3 | 0.578 7 | 0.831 5 | 0.838 1 | 0.34/43 | 0.526 6 | 0.667 2 | 0.706 5 | 0.747 6 | 1.38/5 |
DPCA | 0.707 5 | 0.679 6 | 0.888 3 | 0.890 5 | 0.7 | 0.502 3 | 0.625 8 | 0.700 8 | 0.671 4 | 1.5 |
CLUB | 0.750 5 | 0.705 4 | 0.905 0 | 0.914 3 | 5 | 0.502 7 | 0.625 4 | 0.698 2 | 0.680 9 | 7 |
BP | 0.616 8 | 0.609 0 | 0.743 2 | 0.847 6 | 无 | 0.100 8 | 0.355 0 | 0.425 7 | 0.300 0 | 无 |
VDCBD | 0.769 7 | 0.694 3 | 0.904 2 | 0.904 8 | 14 | 0.539 7 | 0.656 1 | 0.713 9 | 0.738 1 | 11 |
算法 | Wall-Following | Pendigits | ||||||||
ARI | NMI | FM | ACC | 参数 | ARI | NMI | FM | ACC | 参数 | |
K-means | 0.359 0 | 0.261 9 | 0.800 0 | 0.800 2 | 2 | 0.642 1 | 0.719 6 | 0.765 4 | 0.775 2 | 10 |
DBSCAN | 0.076 0 | 0.155 3 | 0.477 8 | 0.528 2 | 0.77/50 | 0.630 2 | 0.723 6 | 0.747 6 | 0.868 8 | 0.32/1 |
DPCA | 0.051 0 | 0.102 0 | 0.412 2 | 0.479 8 | 0.33 | 0.597 4 | 0.732 2 | 0.738 5 | 0.748 6 | 0.31 |
CLUB | 0.002 0 | 0.219 0 | 0.236 4 | 0.791 2 | 1 | 0.675 0 | 0.785 9 | 0.767 6 | 0.828 5 | 10 |
BP | -0.014 5 | 0.055 3 | 0.478 5 | 0.437 1 | 无 | 0.725 9 | 0.821 4 | 0.757 8 | 0.741 0 | 无 |
VDCBD | 0.066 5 | 0.192 2 | 0.487 1 | 0.564 9 | 14 | 0.666 8 | 0.775 2 | 0.778 6 | 0.850 0 | 7 |
1 | XU R, WUNSCH D C. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645-678. 10.1109/tnn.2005.845141 |
2 | AGGARWAL C C, REDDY C K. Data Clustering: Algorithms and Applications[M]. Boca Raton: CRC Press, 2014: 111-124. |
3 | 王垚,孙国梓.基于聚类和实例硬度的入侵检测过采样方法[J].计算机应用, 2021, 41(6): 1709-1714. |
WANG Y, SUN G Z. Oversampling method for intrusion detection based on clustering and instance hardness[J]. Journal of Computer Applications, 2021, 41(6): 1709-1714. | |
4 | 章永来,周耀鉴.聚类算法综述[J].计算机应用, 2019, 39(7): 1869-1882. 10.11772/j.issn.1001-9081.2019010174 |
ZHANG Y L, ZHOU Y J. Review of clustering algorithms[J]. Journal of Computer Applications, 2019, 39(7): 1869-1882. 10.11772/j.issn.1001-9081.2019010174 | |
5 | BHATTACHARJEE P, MITRA P. A survey of density based clustering algorithms[J]. Frontiers of Computer Science, 2021, 15(1): No.151308. 10.1007/s11704-019-9059-3 |
6 | ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise [C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Palo Alto, CA: AAAI Press, 1996: 226-231. |
7 | ANKERST M, BREUNING M M, KRIEGEL H P, et al. OPTICS: ordering points to identify the clustering structure [C]// Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1999: 49-60. 10.1145/304182.304187 |
8 | RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. 10.1126/science.1242072 |
9 | LI Z J, TANG Y C. Comparative density peaks clustering[J]. Expert Systems with Applications, 2018, 95: 236-247. 10.1016/j.eswa.2017.11.020 |
10 | 陈叶旺,申莲莲,钟才明,等.密度峰值聚类算法综述[J].计算机研究与发展, 2020, 57(2): 378-394. 10.7544/issn1000-1239.2020.20190104 |
CHEN Y W, SHEN L L, ZHONG C M, et al. Survey on density peak clustering algorithm[J]. Journal of Computer Research and Development, 2020, 57(2): 378-394. 10.7544/issn1000-1239.2020.20190104 | |
11 | DU M J, DING S F, JIA H J. Study on density peaks clustering based on k-nearest neighbors and principal component analysis[J]. Knowledge-Based Systems, 2016, 99: 135-145. 10.1016/j.knosys.2016.02.001 |
12 | XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40. 10.1016/j.ins.2016.03.011 |
13 | YAN H Q, WANG L, LU Y G. Identifying cluster centroids from decision graph automatically using a statistical outlier detection method[J]. Neurocomputing, 2019, 329: 348-358. 10.1016/j.neucom.2018.10.067 |
14 | LIU R, WANG H, YU X M. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450: 200-226. 10.1016/j.ins.2018.03.031 |
15 | FLORES K G, GARZA S E. Density peaks clustering with gap-based automatic center detection[J]. Knowledge-Based Systems, 2020, 206: No.106350. 10.1016/j.knosys.2020.106350 |
16 | WANG Y Z, WANG D, ZHANG X F, et al. McDPC: Multi-center density peak clustering[J]. Neural Computing and Applications, 2020, 32(17): 13465-13478. 10.1007/s00521-020-04754-5 |
17 | CHEN M, LI L, WANG B, et al. Effectively clustering by finding density backbone based-on kNN[J]. Pattern Recognition, 2016, 60: 486-498. 10.1016/j.patcog.2016.04.018 |
18 | ZHU Y, TING K M, CARMAN M J. Density-ratio based clustering for discovering clusters with varying densities[J]. Pattern Recognition, 2016, 60: 983-997. 10.1016/j.patcog.2016.07.007 |
19 | LOUHICHI S, GZARA M, BEN-ABDALLAH H. Unsupervised varied density based clustering algorithm using spline[J]. Pattern Recognition Letters, 2017, 93: 48-57. 10.1016/j.patrec.2016.10.014 |
20 | AVERBUCH-ELOR H, BAR N, COHEN-OR D. Border-peeling clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1791-1797. 10.1109/tpami.2019.2924953 |
21 | JIN W, TUNG A K H, HAN J W, et al. Ranking outliers using symmetric neighborhood relationship [C]// Proceedings of the 2006 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 3918. Berlin: Springer, 2006: 577-593. |
22 | KARYPIS G, HAN E H, KUMAR V. Chameleon: Hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8): 68-75. 10.1109/2.781637 |
23 | BROHÉE S, VAN HELDEN J. Evaluation of clustering algorithms for protein-protein interaction networks[J]. BMC Bioinformatics, 2006, 7: No.488. 10.1186/1471-2105-7-488 |
24 | AMIGÓ E, GONZALO J, ARTILES J, et al. A comparison of extrinsic clustering evaluation metrics based on formal constraints[J]. Information Retrieval, 2009, 12(4): 461-486. 10.1007/s10791-008-9066-8 |
25 | VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11: 2837-2854. |
26 | HUBERT L, ARABIE P. Comparing partitions[J]. Journal of Classification, 1985, 2(1): 193-218. 10.1007/bf01908075 |
27 | DUA D, GRAFF C. UCI machine learning repository [DS/OL]. [2021-09-26]. . |
[1] | GUO Jia, HAN Litao, SUN Xianlong, ZHOU Lijuan. Comparative density peaks clustering algorithm with automatic determination of clustering center [J]. Journal of Computer Applications, 2021, 41(3): 738-744. |
[2] | WANG Min, WU Yubo, MIN Fan. Multi-category active learning algorithm based on multiple clustering algorithms and multivariate linear regression [J]. Journal of Computer Applications, 2020, 40(12): 3437-3444. |
[3] | YANG Wang, HE Guochao, WU Yan. Density clustering based removal heuristic for vehicle routing problem [J]. Journal of Computer Applications, 2017, 37(8): 2387-2394. |
[4] | MENG Xuechao, YE Shaozhen. New spatio-temporal index method based on real-time data and query log distribution [J]. Journal of Computer Applications, 2017, 37(3): 860-865. |
[5] | HUANG Hongwei, GE Xiaotian, CHEN Xuansong. Density clustering method based on complex learning classification system [J]. Journal of Computer Applications, 2017, 37(11): 3207-3211. |
[6] | ZHANG Jianpeng JIN Xin CHEN Fucai CHEN Hongchang HOU Ying. Distributed data stream clustering algorithm based on affinity propagation [J]. Journal of Computer Applications, 2013, 33(09): 2477-2481. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||