Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (3): 738-744.DOI: 10.11772/j.issn.1001-9081.2020071071

Special Issue: 数据科学与技术

• Data science and technology • Previous Articles     Next Articles

Comparative density peaks clustering algorithm with automatic determination of clustering center

GUO Jia1, HAN Litao1,2, SUN Xianlong1, ZHOU Lijuan1   

  1. 1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao Shandong 266590, China;
    2. Key Laboratory of Geomatics and Digital Technology of Shandong Province(Shandong University of Science and Technology), Qingdao Shandong 266590, China
  • Received:2020-07-23 Revised:2020-10-10 Online:2021-03-10 Published:2020-11-12
  • Supported by:
    This work is partially supported by the Natural Science Foundation of Shandong Province (ZR2017MD003).

自动确定聚类中心的比较密度峰值聚类算法

郭佳1, 韩李涛1,2, 孙宪龙1, 周丽娟1   

  1. 1. 山东科技大学 测绘科学与工程学院, 山东 青岛 266590;
    2. 山东省基础地理信息与数字化技术重点实验室(山东科技大学), 山东 青岛 266590
  • 通讯作者: 韩李涛
  • 作者简介:郭佳(1995-),女,山西阳泉人,硕士研究生,主要研究方向:GIS;韩李涛(1978-),男,山东菏泽人,副教授,博士,主要研究方向:空间信息可视化、三维GIS、室内GIS;孙宪龙(1995-),男,山东菏泽人,硕士研究生,主要研究方向:GIS;周丽娟(1994-),女,山西太原人,硕士研究生,主要研究方向:GIS。
  • 基金资助:
    山东省自然科学基金资助项目(ZR2017MD003)。

Abstract: In order to solve the problem that the clustering centers cannot be determined automatically by Density Peaks Clustering (DPC) algorithm, and the clustering center points and the non-clustering center points are not obvious enough in the decision graph, Comparative density Peaks Clustering algorithm with Automatic determination of clustering center (ACPC) was designed. Firstly, the distance parameter was replaced by the distance comparison quantity, so that the potential clustering centers were more obvious in the decision graph. Then, the 2D interval estimation method was used to perform the automatic selection of clustering centers, so as to realize the automation of clustering process. Experimental results show that the ACPC algorithm has better clustering effect on four synthetic datasets; and the comparison of the Accuracy indicator on real datasets shows that on the dataset Iris, the clustering accuracy of ACPC can reach 94%, which is 27.3% higher than that of the traditional DPC algorithm, and the problem of selecting clustering centers interactively is solved by ACPC.

Key words: clustering analysis, density clustering, density peak, clustering center, statistical analysis

摘要: 针对密度峰值聚类算法(DPC)不能自动确定聚类中心,并且聚类中心点与非聚类中心点在决策图上的显示不够明显的问题,设计了一种自动确定聚类中心的比较密度峰值聚类算法(ACPC)。该算法首先利用距离的比较量来代替原距离参数,使潜在的聚类中心在决策图中更加突出;然后通过二维区间估计方法进行对聚类中心的自动选取,从而实现聚类过程的自动化。仿真实验结果表明,在4个合成数据集上ACPC取得了更好的聚类效果;而在真实数据集上的Accuracy指标对比表明,在Iris数据集上,ACPC聚类结果可达到94%,与传统的DPC算法相比提高了27.3%,ACPC解决了交互式选取聚类中心的问题。

关键词: 聚类分析, 密度聚类, 密度峰值, 聚类中心, 统计分析

CLC Number: