Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (6): 1729-1747.DOI: 10.11772/j.issn.1001-9081.2021061392
Special Issue: 2021年全国开放式分布与并行计算学术年会(DPCS 2021)论文
• National Open Distributed and Parallel Computing Conference 2021 (DPCS 2021) • Previous Articles Next Articles
Wendi HUA1,2,3,4, Yuan GAO1,2,3,4, Meng LYU1,2,3,4, Ping XIE1,2,3,4()
Received:
2021-08-04
Revised:
2021-09-29
Accepted:
2021-09-30
Online:
2022-01-10
Published:
2022-06-10
Contact:
Ping XIE
About author:
HUA Wendi,born in 1998,M. S. candidate. His research interests include computer architecture,mass storage system,embedded system.Supported by:
华文镝1,2,3,4, 高原1,2,3,4, 吕萌1,2,3,4, 谢平1,2,3,4()
通讯作者:
谢平
作者简介:
华文镝(1998—),男,辽宁抚顺人,硕士研究生,CCF会员,主要研究方向:计算机体系结构、大规模存储系统、嵌入式系统基金资助:
CLC Number:
Wendi HUA, Yuan GAO, Meng LYU, Ping XIE. Research on Bloom filter: a survey[J]. Journal of Computer Applications, 2022, 42(6): 1729-1747.
华文镝, 高原, 吕萌, 谢平. 布隆过滤器研究综述[J]. 《计算机应用》唯一官方网站, 2022, 42(6): 1729-1747.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021061392
过滤器 | 计数器扩展性 | 查询和 插入性能 | 重构 频率 | 空间 开销 | 元素个数查询 |
---|---|---|---|---|---|
计数型BF | 静态 | 优 | — | 少 | 不支持 |
谱型BF | 动态 | 差 | 优 | 多 | 支持 |
动态计数型过滤器 | 动态 | 良 | 差 | 多 | 不支持 |
Tab. 1 Comparison of several improved structure schemes based on counting BF
过滤器 | 计数器扩展性 | 查询和 插入性能 | 重构 频率 | 空间 开销 | 元素个数查询 |
---|---|---|---|---|---|
计数型BF | 静态 | 优 | — | 少 | 不支持 |
谱型BF | 动态 | 差 | 优 | 多 | 支持 |
动态计数型过滤器 | 动态 | 良 | 差 | 多 | 不支持 |
过滤器 | 空间开销 | 查找性能 | 插入性能 | 误判率 |
---|---|---|---|---|
普通BF | 静态 | 良 | 优 | 随着元素增多而增高 |
扩展型BF | 动态 | 差 | 优 | 保持不变 |
快速BF | 静态 | 优 | — | 保持不变 |
Tab. 2 Comparison of several improved structure schemes based on common BF
过滤器 | 空间开销 | 查找性能 | 插入性能 | 误判率 |
---|---|---|---|---|
普通BF | 静态 | 良 | 优 | 随着元素增多而增高 |
扩展型BF | 动态 | 差 | 优 | 保持不变 |
快速BF | 静态 | 优 | — | 保持不变 |
是否占用 | 是否连续 | 是否转移 | 含义 |
---|---|---|---|
0 | 0 | 0 | 存储单元为空 |
0 | 0 | 1 | 该元素为系列的开头且元素的商不对应存储单元的位置编号 |
0 | 1 | 0 | — |
0 | 1 | 1 | 该元素前存在与其同商的元素,且其不对应存储单元的编号 |
1 | 0 | 0 | 该元素为系列的开头且该系列仅其一个元素(同样是一个簇的开头) |
1 | 0 | 1 | 与“0,0,1”的含义相同且对应该位置编号的元素在后方进行存储 |
1 | 1 | 0 | — |
1 | 1 | 1 | 与“0,1,1”的含义相同且对应该位置编号的元素在后方进行存储 |
Tab. 3 Meaning of all possible situations of three information bits
是否占用 | 是否连续 | 是否转移 | 含义 |
---|---|---|---|
0 | 0 | 0 | 存储单元为空 |
0 | 0 | 1 | 该元素为系列的开头且元素的商不对应存储单元的位置编号 |
0 | 1 | 0 | — |
0 | 1 | 1 | 该元素前存在与其同商的元素,且其不对应存储单元的编号 |
1 | 0 | 0 | 该元素为系列的开头且该系列仅其一个元素(同样是一个簇的开头) |
1 | 0 | 1 | 与“0,0,1”的含义相同且对应该位置编号的元素在后方进行存储 |
1 | 1 | 0 | — |
1 | 1 | 1 | 与“0,1,1”的含义相同且对应该位置编号的元素在后方进行存储 |
过滤器 | 过滤器 存储内容 | 空间开销 | 查询性能 | 插入性能 | 删除性能 | 查询 误判率 |
---|---|---|---|---|---|---|
d‑left哈希 计数型BF | 元素指纹+计数器 | 差 | 差 | 良 | 良 | 差 |
商型过滤器 | 元素指纹 | 良 | 优 | 差 | 差 | 良 |
CF | 元素指纹 | 优 | 良 | 优 | 优 | 优 |
Tab. 4 Comparison of three optimization schemes
过滤器 | 过滤器 存储内容 | 空间开销 | 查询性能 | 插入性能 | 删除性能 | 查询 误判率 |
---|---|---|---|---|---|---|
d‑left哈希 计数型BF | 元素指纹+计数器 | 差 | 差 | 良 | 良 | 差 |
商型过滤器 | 元素指纹 | 良 | 优 | 差 | 差 | 良 |
CF | 元素指纹 | 优 | 良 | 优 | 优 | 优 |
过滤器称 | 性能特点 | 应用场景 | |||
---|---|---|---|---|---|
查询 | 插入 | 空间 使用 | 误判率 | ||
标准BF | — | — | — | — | 存储系统,网络等众多场景 |
计数型BF | — | — | × | — | 多重集 |
压缩BF | × | × | √ | √ | 分布式系统的节点通信 |
谱型BF | × | × | √ | — | 流数据处理 |
Bloomier过滤器 | √ | × | × | √ | 存储系统的缓存 |
分档式BF | √ | × | × | — | 网络缓存和网络监控系统 |
d‑left哈希计数型BF | × | × | √ | √ | 计数型BF替代品 |
动态计数型 过滤器 | × | × | √ | — | 流数据处理 |
状态BF | — | — | × | √ | 近似并发状态机 |
扩展型BF | × | × | — | √ | 动态数据集合 |
并行分区BF | √ | √ | — | — | 基因序列分析 |
哈夫曼编码计数型BF | × | × | √ | — | 反规避系统 |
多层压缩BF | × | × | √ | — | 反规避系统 |
缓冲BF | × | √ | — | — | SSD存储器 |
布隆Flash | √ | √ | — | — | SSD存储器 |
链式BF | × | √ | — | × | “多插入,少查询”的场景 |
森林结构BF | √ | × | × | √ | 重复数据删除 |
商型过滤器 | √ | × | √ | √ | KV存储系统 |
瀑布过滤器 | √ | × | — | — | SSD存储器 |
可变增量 计数型BF | — | × | × | √ | 网络设备 |
快速BF | √ | √ | × | — | 现代高端路由器和防火墙 |
布隆树 | √ | × | × | √ | 多集合成员查询问题 |
CF | √ | × | √ | — | 计数型BF替代品 |
弹性BF | — | × | — | √ | KV存储系统 |
持久型BF | √ | × | × | — | 网络服务器 |
Rosetta | √ | × | × | — | KV存储系统的范围查询 |
Tab. 5 Improvement scheme comparison of BF
过滤器称 | 性能特点 | 应用场景 | |||
---|---|---|---|---|---|
查询 | 插入 | 空间 使用 | 误判率 | ||
标准BF | — | — | — | — | 存储系统,网络等众多场景 |
计数型BF | — | — | × | — | 多重集 |
压缩BF | × | × | √ | √ | 分布式系统的节点通信 |
谱型BF | × | × | √ | — | 流数据处理 |
Bloomier过滤器 | √ | × | × | √ | 存储系统的缓存 |
分档式BF | √ | × | × | — | 网络缓存和网络监控系统 |
d‑left哈希计数型BF | × | × | √ | √ | 计数型BF替代品 |
动态计数型 过滤器 | × | × | √ | — | 流数据处理 |
状态BF | — | — | × | √ | 近似并发状态机 |
扩展型BF | × | × | — | √ | 动态数据集合 |
并行分区BF | √ | √ | — | — | 基因序列分析 |
哈夫曼编码计数型BF | × | × | √ | — | 反规避系统 |
多层压缩BF | × | × | √ | — | 反规避系统 |
缓冲BF | × | √ | — | — | SSD存储器 |
布隆Flash | √ | √ | — | — | SSD存储器 |
链式BF | × | √ | — | × | “多插入,少查询”的场景 |
森林结构BF | √ | × | × | √ | 重复数据删除 |
商型过滤器 | √ | × | √ | √ | KV存储系统 |
瀑布过滤器 | √ | × | — | — | SSD存储器 |
可变增量 计数型BF | — | × | × | √ | 网络设备 |
快速BF | √ | √ | × | — | 现代高端路由器和防火墙 |
布隆树 | √ | × | × | √ | 多集合成员查询问题 |
CF | √ | × | √ | — | 计数型BF替代品 |
弹性BF | — | × | — | √ | KV存储系统 |
持久型BF | √ | × | × | — | 网络服务器 |
Rosetta | √ | × | × | — | KV存储系统的范围查询 |
1 | BLOOM B H. Space/time trade-offs in hash coding with allowable errors[J]. Communications of the ACM, 1970, 13(7): 422-426. 10.1145/362686.362692 |
2 | CARTER L, FLOYD R W, GILL J, et al. Exact and approximate membership testers[C]// Proceedings of the 10th Annual ACM Symposium on Theory of Computing. New York: ACM, 1978:59-65. 10.1145/800133.804332 |
3 | 肖明忠,代亚非. Bloom Filter及其应用综述[J]. 计算机科学, 2004, 31(4):180-183. 10.3969/j.issn.1002-137X.2004.04.049 |
XIAO M Z, DAI Y F. A survey on Bloom filters and its applications[J]. Computer Science, 2004, 31(4): 180-183. 10.3969/j.issn.1002-137X.2004.04.049 | |
4 | 刘元珍. Bloom Filter及其在网络中的应用综述[J]. 计算机应用与软件, 2013, 30(9):219-220, 249. 10.3969/j.issn.1000-386x.2013.09.060 |
LIU Y Z. Survey on Bloom filter and its applications in networks[J]. Computer Applications and Software, 2013, 30(9): 219-220, 249. 10.3969/j.issn.1000-386x.2013.09.060 | |
5 | PENG Y Q, GUO J W, LI F F, et al. Persistent Bloom filter: membership testing for the entire history[C]// Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018:1037-1052. 10.1145/3183713.3183737 |
6 | MCLLROY M. Development of a spelling list[J]. IEEE Transactions on Communications, 1982, 30(1): 91-99. 10.1109/tcom.1982.1095395 |
7 | MULLIN J K, MARGOLIASH D J. A tale of three spelling checkers[J]. Software: Practice and Experience, 1990, 20(6): 625-630. 10.1002/spe.4380200607 |
8 | SPAFFORD E H. OPUS: preventing weak password choices[J]. Computers and Security, 1992, 11(3): 273-278. 10.1016/0167-4048(92)90207-8 |
9 | SEVERANCE D G, LOHMAN G M. Differential files: their application to the maintenance of large databases[J]. ACM Transactions on Database Systems, 1976, 1(3): 256-267. 10.1145/320473.320484 |
10 | GREMILLION L L. Designing a Bloom filter for differential file access[J]. Communications of the ACM, 1982, 25(9): 600-604. 10.1145/358628.358632 |
11 | FANG M, SHIVAKUMAR N, GARCIA-MOLINA H, et al. Computing iceberg queries efficiently[C]// Proceedings of the 24th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1998: 299-310. |
12 | BRODER A Z, MITZENMACHER M. Network applications of bloom filters: a survey[J]. Internet Mathematics, 2004, 1(4): 485-509. 10.1080/15427951.2004.10129096 |
13 | STOICA I, MORRIS R, KARGER D, et al. Chord: a scalable peer-to-peer lookup service for internet applications[C]// Proceedings of the 2001 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2001:149-160. 10.1145/964723.383071 |
14 | RATNASAMY S, FRANCIS P, HANDLEY M, et al. A scalable content-addressable network[C]// Proceedings of the 2001 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2001:161-172. 10.1145/964723.383072 |
15 | JOKELA P, ZAHEMSZKY A, ROTHENBERG C E, et al. LIPSIN: line speed publish/subscribe inter-networking[C]// Proceedings of the 2009 ACM SIGCOMM Conference on Data Communication. New York: ACM, 2009:195-206. |
16 | RHEA S C, KUBIATOWICZ J. Probabilistic location and routing[C]// Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies. Piscataway: IEEE, 2002:1248-1257. |
17 | WHITAKER A, WETHERALL D. Forwarding without loops in Icarus[C]// Proceedings of the 2002 IEEE Conference on Open Architectures and Network Programming. Piscataway: IEEE, 2002:63-75. |
18 | FENG W C, SHIN K G, KANDLUR D D, et al. The BLUE active queue management algorithms[J]. IEEE/ACM Transactions on Networking, 2002, 10(4): 513-528. 10.1109/tnet.2002.801399 |
19 | ESTAN C, VARGHESE G. New directions in traffic measurement and accounting[C]// Proceedings of the 2002 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2002:323-336. 10.1145/964725.633056 |
20 | 谢平. 存储系统重复数据删除技术研究综述[J]. 计算机科学, 2014, 41(1):22-30, 42. 10.3969/j.issn.1002-137X.2014.01.003 |
XIE P. Survey on data deduplication techniques for storage systems[J]. Computer Science, 2014, 41(1): 22-30, 42. 10.3969/j.issn.1002-137X.2014.01.003 | |
21 | MALDE K, O'SULLIVAN B. Using Bloom filters for large scale gene sequence analysis in Haskell[C]// Proceedings of the 2009 International Symposium on Practical Aspects of Declarative Languages, LNPSE 5418. Berlin: Springer, 2009:183-194. |
22 | CANIM M, MIHAILA G A, BHATTACHARJEE B, et al. Buffered bloom filters on solid state storage[C/OL]// Proceedings of the 2010 International Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures@Very Large Data Bases Conference. [2021-05-23].. 10.14778/1920841.1921017 |
23 | XIE K, MIN Y H, ZHANG D F, et al. Basket Bloom filters for membership queries[C]// Proceedings of the 2005 IEEE Region 10 Conference. Piscataway: IEEE, 2005:1-6. 10.1109/tencon.2005.301258 |
24 | 何新贵,梁久祯. 利用目标函数梯度的遗传算法[J]. 软件学报, 2001, 12(7):981-986. |
HE X G, LIANG J Z. Genetic algorithms using gradients of object functions[J]. Journal of Software, 2001, 12(7): 981-986. | |
25 | LI Y K, TIAN C J, GUO F, et al. ElasticBF: elastic bloom filter with hotness awareness for boosting read performance in large key-value stores[C]// Proceedings of the 2019 USENIX Annual Technical Conference. Berkeley: USENIX Association, 2019:739-752. |
26 | Google. LevelDB[DB/OL]. [2021-02-24].. 10.23919/icact.2017.7890198 |
27 | Meta Open Source. RocksDB[DB/OL]. [2021-05-06].. 10.5626/jok.2021.48.11.1167 |
28 | RAJU P, KADEKODI R, CHIDAMBARAM V, et al. PebblesDB: building key-value stores using fragmented log-structured merge trees[C]// Proceedings of the 26th Symposium on Operating Systems Principles. New York: ACM, 2017:497-514. 10.1145/3132747.3132765 |
29 | O’NEIL P E, CHENG E, GAWLICK D, et al. The Log-Structured Merge-tree (LSM-tree)[J]. Acta Informatica, 1996, 33(4): 351-385. 10.1007/s002360050048 |
30 | DAYAN N, ATHANASSOULIS M, IDREOS S. Monkey: optimal navigable key-value store[C]// Proceedings of the 2017 ACM International Conference on Management of Data. New York: ACM, 2017:79-94. 10.1145/3035918.3064054 |
31 | ZHOU Y Y, PHILBIN J F, LI K. The multi-queue replacement algorithm for second level buffer caches[C]// Proceedings of the 2001 USENIX Annual Technical Conference. Berkeley: USENIX Association, 2001:91-104. |
32 | CHEN Y P, SCHMIDT B, MASSKELL D L. A reconfigurable Bloom filter architecture for BLASTN[C]// Proceedings of the 2009 Architektur von Rechensystemen. Berlin: Springer, 2009:40-49. 10.1007/978-3-642-00454-4_7 |
33 | DEBNATH B, SENGUPTA S, LI J, et al. BloomFlash: Bloom filter on flash-based storage[C]// Proceedings of the 31st International Conference on Distributed Computing Systems. Piscataway: IEEE, 2011:635-644. 10.1109/icdcs.2011.44 |
34 | GUO D K, WU J, CHEN H H, et al. Theory and network applications of dynamic Bloom filters[C]// Proceedings of the 25th IEEE International Conference on Computer Communications. Piscataway: IEEE, 2006:1-12. 10.1109/infocom.2006.325 |
35 | LU G L, DEBNATH B K, DU D H C. A forest-structured Bloom filter with flash memory[C]// Proceedings of the IEEE 27th Symposium on Mass Storage Systems and Technologies. Piscataway: IEEE, 2011:1-6. 10.1109/msst.2011.5937232 |
36 | YOON M K, SON J, SHIN S H. Bloom tree: a search tree based on Bloom filters for multiple-set membership testing[C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: IEEE, 2014:1429-1437. 10.1109/infocom.2014.6848077 |
37 | HAO F, KODIALAM M, LAKSHAM T V, et al. Fast dynamic multiple-set membership testing using combinatorial Bloom filters[J]. IEEE/ACM Transactions on Networking, 2012, 20(1): 295-304. 10.1109/tnet.2011.2173351 |
38 | DHARMAPURIKAR S, KRISHNAMURTHY P, TAYLOR D E. Longest prefix matching using Bloom filters[J]. IEEE/ACM Transactions on Networking, 2006, 14(2): 397-409. 10.1109/tnet.2006.872576 |
39 | LUO S Q, CHATTERJEE S, KETSETSIDIS R, et al. Rosetta: a robust space-time optimized range filter for key-value stores[C]// Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020:2071-2086. 10.1145/3318464.3389731 |
40 | ZHANG H C, LIM H, LEIS V, et al. SuRF: practical range query filtering with fast succinct tries[C]// Proceedings of the 2018 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2018:323-336. 10.1145/3183713.3196931 |
41 | FAN L, CAO P, ALMEIDA J, et al. Summary cache: a scalable wide-area web cache sharing protocol[C]// Proceedings of the 1998 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 1998:254-265. 10.1145/285237.285287 |
42 | LAKSHMAN A, MALIK P. Cassandra: a decentralized structured storage system[J]. ACM SIGOPS Operating Systems Review, 2010, 44(2): 35-40. 10.1145/1773912.1773922 |
43 | The Chromium Projects. Google Chrome safe browsing[EB/OL]. [2021-05-09].. 10.1145/1551644.1556050 |
44 | CHANG F, DEAN J, GHEMAWAT S, et al. Bigtable: a distributed storage system for structured data[C]// Proceedings of the 7th USENIX Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2006:205-218. |
45 | COHEN S, MATIAS Y. Spectral Bloom filters[C]// Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2003:241-252. 10.1145/872757.872787 |
46 | AGUILAR-SABORIT J, TRANCOSO P, MUNTES-MULERO V, et al. Dynamic count filters[J]. ACM SIGMOD Record, 2006, 35(1): 26-32. 10.1145/1121995.1122000 |
47 | XIE K, MIN Y H, ZHANG D F, et al. A scalable Bloom filter for membership queries[C]// Proceedings of the 2007 Global Telecommunications Conference. Piscataway: IEEE, 2007:543-547. 10.1109/glocom.2007.107 |
48 | CARTER J L, WEGMAN M N. Universal classes of hash functions[J]. Journal of Computer and System Sciences, 1979, 18(2): 143-154. 10.1016/0022-0000(79)90044-8 |
49 | QIAO Y, LI T, CHEN S G. Fast Bloom filters and their generalization[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(1): 93-103. 10.1109/tpds.2013.46 |
50 | CHAZELLE B, KILIAN J, RUBINFELD R, et al. The Bloomier filter: an efficient data structure for static support lookup tables[C]// Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: SIAM, 2004:30-39. |
51 | VOCKING B. How asymmetry helps load balancing[C]// Proceedings of the 40th Annual Symposium on Foundations of Computer Science. Piscataway: IEEE, 1999:131-141. |
52 | BONOMI F, MITZENMACHER M, PANIGRAHY R, et al. An improved construction for counting Bloom filters[C]// Proceedings of the 2006 European Symposium on Algorithms, LNTCS 4168. Berlin: Springer, 2006:684-695. |
53 | BENDER M A, FARACH -COLTON M, JOHNSON R, et al. Don’t thrash: how to cache your hash on flash[J]. Proceedings of the VLDB Endowment, 2012, 5(11): 1627-1637. 10.14778/2350229.2350275 |
54 | CLERRY J G. Compact hash tables using bidirectional linear probing[J]. IEEE Transactions on Computers, 1984, C-33(9): 828-834. 10.1109/tc.1984.1676499 |
55 | Wikipedia. Quotient filter[EB/OL]. [2021-06-13].. 10.36934/tr2021_249 |
56 | PAGH R, RODLER F F. Cuckoo hashing[J]. Journal of Algorithms, 2004, 51(2): 122-144. 10.1016/j.jalgor.2003.12.002 |
57 | FAN B, ANDERSEN D G, KAMINSKY M, et al. Cuckoo filter: practically better than bloom[C]// Proceedings of the 10th ACM International Conference on emerging Networking Experiments and Technologies. New York: ACM, 2014:75-88. 10.1145/2674005.2674994 |
58 | FAN B, ANDERSEN D G, KAMINSKY M. MemC3: compact and concurrent memcache with dumber caching and smarter hashing[C]// Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2013:371-384. |
59 | ROTTENSTREICH O, KANIZO Y, KESLASSY I. The variable-increment counting Bloom filter[C]// Proceedings of the 2012 IEEE Conference on Computer Communications. Piscataway: IEEE, 2012:1880-1888. 10.1109/infcom.2012.6195563 |
60 | GRAHAM S. Bh sequences[M]// BERNDT B C, DIAMOND H G, HILDEBRAND A J. Analytic Number Theory, PM 138. Boston: Birkhäuser, 1996: 431-449. |
61 | PUTZE F, SANDERS P, SINGLER J. Cache-, hash- and space-efficient Bloom filters[C]// Proceedings of the 2007 nternational Workshop on Experimental and Efficient Algorithms, LNTCS 4525. Berlin: Springer, 2007:108-121. |
62 | MACKERT L F, LOHMAN G M. R* optimizer validation and performance evaluation for local queries[C]// Proceedings of the 1986 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1986:84-95. 10.1145/16894.16863 |
63 | FICARA D, DI PIETRO A, GIORDANO S, et al. Enhancing counting Bloom filters through Huffman-coded multilayer structures[J]. IEEE/ACM Transactions on Networking, 2010, 18(6): 1977-1987. 10.1109/tnet.2010.2055243 |
64 | BONOMI F, MITZENMACHER M, PANIGRAHY R, et al. Beyond Bloom filters: from approximate membership checks to approximate state machines[C]// Proceedings of the 2006 ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2006:315-326. 10.1145/1151659.1159950 |
65 | Wikipedia. Bloom Filter[EB/OL]. [2021-06-13].. 10.1007/springerreference_64492 |
66 | DEEDS K, HENTSCHEL B, IDREOS S. Stacked filters: learning to filter by structure[J]. Proceedings of the VLDB Endowment, 2020, 14(4): 600-612. 10.14778/3436905.3436919 |
67 | DAYAN N, TWITTO M. Chucky: a succinct cuckoo filter for LSM-tree[C]// Proceedings of the 2021 International Conference on Management of Data. New York: ACM, 2021:365-378. 10.1145/3448016.3457273 |
[1] | NING Jin, CHEN Leiting, LUO Zijuan, ZHOU Chuan, ZENG Huiru. Evaluation metrics of outlier detection algorithms [J]. Journal of Computer Applications, 2020, 40(9): 2622-2627. |
[2] | ZHANG Zhen, FU Yinjin, HU Guyu. Bloom filter-based wear-leveling scheme for novel hybrid memory architecture [J]. Journal of Computer Applications, 2018, 38(8): 2230-2235. |
[3] | ZHANG En, JIN Ganggang. Cloud outsourcing multiparty private set intersection protocol based on homomorphic encryption and Bloom filter [J]. Journal of Computer Applications, 2018, 38(8): 2256-2260. |
[4] | LIU Zhusong, YANG Zhangjie. Efficient and secure deduplication cloud storage scheme based on proof of ownership by Bloom filter [J]. Journal of Computer Applications, 2017, 37(3): 766-770. |
[5] | . Inverse insert algorithm based on segment hash [J]. Journal of Computer Applications, 2011, 31(02): 514-516. |
[6] | . Multi-keyword search over P2P based on Bloom filter [J]. Journal of Computer Applications, 2010, 30(9): 2335-2338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||