Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (8): 2609-2616.DOI: 10.11772/j.issn.1001-9081.2021071185
Special Issue: 前沿与综合应用
• Frontier and comprehensive applications • Previous Articles Next Articles
Received:
2021-07-08
Revised:
2021-09-13
Accepted:
2021-09-22
Online:
2021-09-30
Published:
2022-08-10
Contact:
Shuxin YANG
About author:
YANG Shuxin, born in 1978, Ph. D., associate professor. His research interests include social network analysis, bioinformatics.Supported by:
通讯作者:
杨书新
作者简介:
杨书新(1978—),男,江西九江人,副教授,博士,CCF会员,主要研究方向:社交网络分析、生物信息学;基金资助:
CLC Number:
Shuxin YANG, Jingfeng XU. Positive influence maximization based on reverse influence sampling[J]. Journal of Computer Applications, 2022, 42(8): 2609-2616.
杨书新, 许景峰. 基于反向影响采样的积极影响力最大化[J]. 《计算机应用》唯一官方网站, 2022, 42(8): 2609-2616.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071185
符号 | 描述 | 符号 | 描述 |
---|---|---|---|
Gs | 符号网络图 | I+ | 积极影响力范围 |
V | 节点集合 | RRS | 反向可达集 |
E | 有向边集合 | depth | 采样深度 |
P | 影响概率 | seed | 种子集合 |
S | 节点的极性关系 | ε | 近似比参数 |
C(u) | 节点u的状态 | l | 错误概率参数 |
g | 采样图 | Pr | 正节点占比率 |
k | 种子集的节点个数 |
Tab. 1 Representation of frequently used symbols
符号 | 描述 | 符号 | 描述 |
---|---|---|---|
Gs | 符号网络图 | I+ | 积极影响力范围 |
V | 节点集合 | RRS | 反向可达集 |
E | 有向边集合 | depth | 采样深度 |
P | 影响概率 | seed | 种子集合 |
S | 节点的极性关系 | ε | 近似比参数 |
C(u) | 节点u的状态 | l | 错误概率参数 |
g | 采样图 | Pr | 正节点占比率 |
k | 种子集的节点个数 |
数据集 | |V| | |E| | d | E-/E+ |
---|---|---|---|---|
Bitcoinotc | 5 881 | 35 592 | 4 | 0.100 |
Slashdot | 77 350 | 516 575 | 11 | 0.232 |
Epinions | 131 828 | 841 372 | 14 | 0.147 |
Tab. 2 Relevant parameters of experimental datasets
数据集 | |V| | |E| | d | E-/E+ |
---|---|---|---|---|
Bitcoinotc | 5 881 | 35 592 | 4 | 0.100 |
Slashdot | 77 350 | 516 575 | 11 | 0.232 |
Epinions | 131 828 | 841 372 | 14 | 0.147 |
算法 | Bitcoinotc | Slashdot | Epinions |
---|---|---|---|
Random | 0.69 | 0.52 | 0.45 |
IMM | 0.74 | 0.64 | 0.57 |
Effective Degree | 0.75 | 0.72 | 0.62 |
POD | 0.76 | 0.73 | 0.63 |
RIS-S | 0.77 | 0.77 | 0.69 |
Tab. 3 Comparison of positive ratio at k=50
算法 | Bitcoinotc | Slashdot | Epinions |
---|---|---|---|
Random | 0.69 | 0.52 | 0.45 |
IMM | 0.74 | 0.64 | 0.57 |
Effective Degree | 0.75 | 0.72 | 0.62 |
POD | 0.76 | 0.73 | 0.63 |
RIS-S | 0.77 | 0.77 | 0.69 |
1 | DOMINGOS P, RICHARDSON M. Mining the network value of customers [C]// Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2001: 57-66. 10.1145/502512.502525 |
2 | 程苏琦,沈华伟,张国清,等.符号网络研究综述[J].软件学报, 2014, 25(1): 1-15. |
CHENG S Q, SHEN H W, ZHANG G Q, et al. Survey of signed network research[J]. Journal of Software, 2014, 25(1): 1-15. | |
3 | KEMPE D, KLEINBERG J, TARDOS É. Maximizing the spread of influence through a social network [C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003: 137-146. 10.1145/956750.956769 |
4 | LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks [C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 420-429. 10.1145/1281192.1281239 |
5 | GOYAL A, LU W, LAKSHMANAN L V S. CELF++: optimizing the greedy algorithm for influence maximization in social networks [C]// Proceedings of the 20th International Conference Companion on World Wide Web. New York: ACM, 2011: 47-48. 10.1145/1963192.1963217 |
6 | CHEN W, WANG Y J, YANG S Y. Efficient influence maximization in social networks [C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 199-208. 10.1145/1557019.1557047 |
7 | BORGS C, BRAUTBAR M, CHAYES J, et al. Maximizing social influence in nearly optimal time [C]// Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2014: 946-957. 10.1137/1.9781611973402.70 |
8 | TANG Y Z, XIAO X K, SHI Y C. Influence maximization: near-optimal time complexity meets practical efficiency [C]// Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 75-86. 10.1145/2588555.2593670 |
9 | TANG Y Z, SHI Y C, XIAO X K. Influence maximization in near-linear time: a martingale approach [C]// Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2015: 1539-1554. 10.1145/2723372.2723734 |
10 | LI D, XU Z M, CHAKRABORTY N, et al. Polarity related influence maximization in signed social networks[J]. PLoS ONE, 2014, 9(7): No.e102199. 10.1371/journal.pone.0102199 |
11 | LI D, WANG C H, ZHANG S P, et al. Positive influence maximization in signed social networks based on simulated annealing[J]. Neurocomputing, 2017, 260: 69-78. 10.1016/j.neucom.2017.03.003 |
12 | WANG H H, YANG Q, FANG L, et al. Maximizing positive influence in signed social networks [C]// Proceedings of the 2015 International Conference on Cloud Computing and Security, LNCS 9483. Cham: Springer, 2015: 356-367. |
13 | HOSSEINI-POZVEH M, ZAMANIFAR K, NAGHSH-NILCHI A R, et al. Maximizing the spread of positive influence in signed social networks[J]. Intelligent Data Analysis, 2016, 20(1): 199-218. 10.3233/ida-150801 |
14 | JU W J, CHEN L, LI B, et al. A new algorithm for positive influence maximization in signed networks[J]. Information Sciences, 2020, 512: 1571-1591. 10.1016/j.ins.2019.10.061 |
15 | QIU L Q, ZHANG S, YU J F. Positive influence maximization in the signed social networks considering polarity relationship and propagation probability[J]. International Journal of Software Engineering and Knowledge Engineering, 2021, 31(2): 249-267. 10.1142/s0218194021500078 |
16 | NGUYEN H T, THAI M T, DINH T N. Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks [C]// Proceedings of the 2016 International Conference on Management of Data. New York: ACM, 2016: 695-710. 10.1145/2882903.2915207 |
17 | 杨书新,梁文,朱凯丽.基于三级邻居的复杂网络节点影响力度量方法[J].电子与信息学报, 2020, 42(5): 1140-1148. 10.11999/JEIT190440 |
YANG S X, LIANG W, ZHU K L. Measurement of node influence based on three-level neighbor in complex networks[J]. Journal of Electronics and Information Technology, 2020, 42(5): 1140-1148. 10.11999/JEIT190440 | |
18 | ŞIMŞEK A. A new greedy algorithm for influence maximization on signed social networks[J]. Gazi Journal of Engineering Sciences, 2019, 5(3): 250-257. 10.30855/gmbd.2019.03.06 |
19 | LIU W, CHEN X, JEON B, et al. Influence maximization on signed networks under independent cascade model[J]. Applied Intelligence, 2019, 49(3): 912-928. 10.1007/s10489-018-1303-2 |
20 | SRIVASTAVA A, CHELMIS C, PRASANNA V K. Social influence computation and maximization in signed networks with competing cascades [C]// Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2015: 41-48. 10.1145/2808797.2809304 |
21 | GARIMELLA K, GIONIS A, PAROTSIDIS N, et al. Balancing information exposure in social networks [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 4666-4674. |
[1] | Jie YANG, Mingyang ZHANG, Xiaobin RUI, Zhixiao WANG. Influence maximization algorithm based on node coverage and structural hole [J]. Journal of Computer Applications, 2022, 42(4): 1155-1161. |
[2] | Qingqing WU, Lihua ZHOU, Xuanyi CUN, Guowang DU, Yiting JIANG. Influence maximization algorithm based on directed acyclic graph in heterogeneous information networks [J]. Journal of Computer Applications, 2022, 42(3): 895-903. |
[3] | Meizi LI, Yifei MI, Qian ZHANG, Bo ZHANG. Opinion leader recognition algorithm based on K-core decomposition in social networks [J]. Journal of Computer Applications, 2022, 42(1): 26-35. |
[4] | ZHANG Meng, LI Weihua. Influence maximization algorithm based on user interactive representation [J]. Journal of Computer Applications, 2021, 41(7): 1964-1969. |
[5] | YANG Shuxin, LIANG Wen, ZHU Kaili. Reverse influence maximization algorithm in social networks [J]. Journal of Computer Applications, 2020, 40(7): 1944-1949. |
[6] | ZHANG Xianli, TANG Jianxin, CAO Laicheng. Influence maximization algorithm based on reverse PageRank [J]. Journal of Computer Applications, 2020, 40(1): 96-102. |
[7] | SHENG Jun, GU Shensheng, CHEN Ling. Node classification in signed networks based on latent space projection [J]. Journal of Computer Applications, 2019, 39(5): 1411-1415. |
[8] | SUN Zili, PENG Jian, TONG Bo. Influence maximization algorithm on internal decay based on community structure in social network [J]. Journal of Computer Applications, 2019, 39(3): 834-838. |
[9] | LI Yuezhi, ZHU Yuanyuan, ZHONG Ming. k-core filtered influence maximization algorithms in social networks [J]. Journal of Computer Applications, 2018, 38(2): 464-470. |
[10] | LI Minjia, XU Guoyan, ZHU Shuai, ZHANG Wangjuan. Influence maximization algorithm based on structure hole and degree discount [J]. Journal of Computer Applications, 2018, 38(12): 3419-3424. |
[11] | LIU Yuanying, GUO Jingfeng, WEI Lidong, HU Xinzhuan. Fast influence maximization algorithm in social network under budget control [J]. Journal of Computer Applications, 2017, 37(2): 367-372. |
[12] | ZHAO Xiaohui, LIU Fang'ai. Computing global unbalanced degree of signed networks based on culture algorithm [J]. Journal of Computer Applications, 2016, 36(12): 3341-3346. |
[13] | WU Kai JI Xinsheng GUO Jinshi LIU Caixia. Influence maximization algorithm for micro-blog network [J]. Journal of Computer Applications, 2013, 33(08): 2091-2094. |
[14] | KONG Ling-qi YANG Meng-long. Improvement of clustering algorithm FEC for signed networks [J]. Journal of Computer Applications, 2011, 31(05): 1395-1399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||