[1] GUHA R, KUMAR R, RAGHAVAN P, et al. Propagation of trust and distrust[C]// Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004: 403-412. [2] SONG D J, MEYER D. Link sign prediction and ranking in signed directed social networks[J]. Social Network Analysis & Mining, 2015, 5(1): 1-14. [3] BURKE M, KRAUL R. Mopping up: modeling Wikipedia promotion decisions[C]// Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 2008:27-36. [4] KUNEGIS J, LOMMATZSCH A, BAUCKHAGE C. The Slashdot zoo: mining a social network with negative edges[C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009:541-550. [5] 王新月,王兴超,雷雳,等.社交网站在社会认同发展中的作用[J].心理科学进展, 2018, 26(11): 2024-2034.(WANG X Y, WANG X C, LEI L, et al. The role of social networking sites in the development of social identity[J]. Advances in Psychological Science, 2018, 26(11): 2024-2034.) [6] ZHELEVA E, GETOOR L. To join or not to join: the illusion of privacy in social networks with mixed public and private user profiles[C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009: 531-540. [7] ABBASI M A, TANG J,LIU H. Scalable learning of users preferences using networked data[C]// Proceedings of the 25th ACM Conference on Hypertext and Social Media. New York: ACM, 2014: 4-12. [8] TANG L, LIU H. Relational learning via latent social dimensions[C]// Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 817-826. [9] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93. [10] GETOOR L, DIEHL C P. Link mining: a survey[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(2): 3-12. [11] BHAGAT S, CORMODE G, MUTHUKRISHNAN S. Node classification in social networks[C]// Social Network Data Analytics. Berlin: Springer, 2011: 115-148. [12] LU Q, GETOOR L. Link-based classification[C]// Proceedings of the 20th International Conference on International Conference on Machine Learning. Menlo Park, CA: AAAI Press, 2003: 496-503. [13] AZRAN A. The rendezvous algorithm: multiclass semi-supervised learning with Markov random walks[C]// Proceedings of the 24th International Conference on Machine Learning. New York: ACM, 2007:49-56. [14] ZHU X, GHAHRAMANI Z, JOHN L, et al. Semi-supervised learning using Gaussian fields and harmonic functions[C]// Proceedings of the 20th International Conference on Machine Learning. Menlo Park, CA: AAAI Press, 2003: 912-919. [15] ZHOU D, BOUSQUET O, THOMAS N L, et al. Learning with local and global consistency[C]// Proceedings of the 16th International Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 2003: 321-328. [16] ZHOU D, HUANG J, SCHOLKOPF B. Learning from labeled and unlabeled data on a directed graph[C]// Proceedings of the 22nd International Conference on Machine Learning. New York: ACM, 2005: 1036-1043. [17] BALUJA S, SETH R, SIVAKUMAR D, et al. Video suggestion and discovery for YouTube: taking random walks through the view graph[C]// Proceedings of the 17th International Conference on World Wide Web. New York: ACM, 2008: 895-904. [18] NANDANWAR S, MURTY M N. Structural neighborhood based classification of nodes in a network[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1085-1094. [19] TASKAR B, ABBEEL P, KOLLER D. Discriminative probabilistic models for relational data[C]// Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2002:485-492. [20] 王小攀,胡艳.基于双图结构标签传递算法的高光谱数据分类[J].计算机与数字工程,2018, 46(10): 2117-2122.(WANG X P,HU Y. Hyperspectral data classification based on double graph structure label transfer algorithm[J]. Computer and Digital Engineering, 2018, 46(10): 2117-2122.) [21] 邵海军. 弱关联Web数据分类方法优化研究与仿真[J].计算机仿真,2015,32(12): 392-395.(SHAO H J. Research and simulation on the optimization of weak association Web data classification method[J]. Computer Simulation, 2015, 32(12):392-395.) [22] LI Y C, NIE X Q, HUANG R. Web spam classification method based on deep belief networks[J]. Expert Systems with Applications, 2018, 96: 261-270. [23] ZHANG Z,WANG H,LIU L, et al. Multi-label relational classification via node and label correlation[J]. Neurocomputing, 2018, 292: 72-81. [24] KAZIENKO P, KAJDANOWICZ T. Label-dependent node classification in the network[J]. Neurocomputing, 2012, 75(1): 199-209. [25] ZHANG Q, LI M Z, DENG Y. Measure the structure similarity of nodes in complex networks based on relative entropy[J]. Physica A: Statistical Mechanics and its Applications, 2018, 491:749-763. [26] GIANVITO P, FRANCESCO S, DONATO M, et al. Multi-type clustering and classification from heterogeneous networks[J].Information Sciences, 2018, 425:107-126. [27] LESKOVEC J, HUTTENLOCHER D. Predicting positive and negative links in online social networks[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010:641-650. |