Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (4): 1044-1049.DOI: 10.11772/j.issn.1001-9081.2021071273
Special Issue: CCF第36届中国计算机应用大会 (CCF NCCA 2021)
• The 36 CCF National Conference of Computer Applications (CCF NCCA 2020) • Previous Articles Next Articles
Changqing JI1,2, Zhiyong GAO2, Jing QIN3, Zumin WANG2()
Received:
2021-07-14
Revised:
2021-08-18
Accepted:
2021-08-27
Online:
2022-04-15
Published:
2022-04-10
Contact:
Zumin WANG
About author:
JI Changqing, born in 1980, Ph. D., associate professor. His research interests include artificial intelligence, big data analysis, spatial data base, smart healthcare.Supported by:
通讯作者:
汪祖民
作者简介:
季长清(1980—),男,辽宁庄河人,副教授,博士,CCF会员,主要研究方向:人工智能、大数据分析、空间数据库、智慧医疗基金资助:
CLC Number:
Changqing JI, Zhiyong GAO, Jing QIN, Zumin WANG. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4): 1044-1049.
季长清, 高志勇, 秦静, 汪祖民. 基于卷积神经网络的图像分类算法综述[J]. 《计算机应用》唯一官方网站, 2022, 42(4): 1044-1049.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071273
1 | HUANG B, HE B Y, WU L N, et al. A deep learning approach to detecting ships from high-resolution aerial remote sensing images[J]. Journal of Coastal Research, 2020, 111(SI): 16-20. 10.2112/jcr-si111-003.1 |
2 | LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584-1605. 10.1093/nsr/nwaa047 |
3 | 谢志华,江鹏,余新河,等. 基于VGGNet和多谱带循环网络的高光谱人脸识别系统[J]. 计算机应用, 2019, 39(2):388-391. 10.11772/j.issn.1001-9081.2018081788 |
XIE Z H, JIANG P, YU X H, et al. Hyperspectral face recognition system based on VGGNet and multi-band recurrent network[J]. Journal of Computer Applications, 2019, 39(2):388-391. 10.11772/j.issn.1001-9081.2018081788 | |
4 | FU K S, ROSENFELD. Pattern recognition and image processing[J]. IEEE Transactions on Computers, 1976, C-25(12): 1336-1346. 10.1109/tc.1976.1674602 |
5 | RUCK D W, ROGERS S K, KABRISKY M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Computing, 1990, 2(2): 40-48. 10.1109/ijcnn.1990.137802 |
6 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. 10.1126/science.1127647 |
7 | NIU X X, SUEN C Y. A novel hybrid CNN-SVM classifier for recognizing handwritten digits[J]. Pattern Recognition, 2012, 45(4): 1318-1325. 10.1016/j.patcog.2011.09.021 |
8 | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. 10.1038/323533a0 |
9 | HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. 10.1109/tpami.2015.2389824 |
10 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks C]// Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2012: 1097-1105. |
11 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10) [2021-06-20].. 10.5244/c.28.6 |
12 | SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9. 10.1109/cvpr.2015.7298594 |
13 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. 10.1109/cvpr.2016.90 |
14 | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2021-06-20].. 10.1109/cvpr.2018.00286 |
15 | ZHANG L, WANG X S, YANG D, et al. Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation[J]. IEEE Transactions on Medical Imaging, 2020, 39(7): 2531-2540. 10.1109/tmi.2020.2973595 |
16 | 孔令军,王茜雯,包云超,等. 基于深度学习的医疗图像分割综述[J].无线电通信技术, 2021, 47(2):121-130. 10.3969/j.issn.1003-3114.2021.02.001 |
KONG L J, WANG Q W, BAO Y C, et al. A survey on medical image segmentation based on deep learning[J]. Radio Communications Technology, 2021, 47(2):121-130. 10.3969/j.issn.1003-3114.2021.02.001 | |
17 | 田锦,袁家政,刘宏哲. 基于实例分割的车道线检测及自适应拟合算法[J]. 计算机应用, 2020, 40(7):1932-1937. 10.1109/cvidl51233.2020.00-92 |
TIAN J, YUAN J Z, LIU H Z. Instance segmentation based lane line detection and adaptive fitting algorithm[J]. Journal of Computer Applications, 2020, 40(7):1932-1937. 10.1109/cvidl51233.2020.00-92 | |
18 | 樊玮,刘挺,黄睿,等. 卷积神经网络低层特征辅助的图像实例分割方法[J]. 计算机科学, 2020, 47(11):186-191. 10.11896/jsjkx.191200063 |
FAN W, LIU T, HUANG R, et al. Low-level CNN feature aided image instance segmentation[J]. Computer Science, 2020, 47(11):186-191. 10.11896/jsjkx.191200063 | |
19 | LE Q V, NGIAM J Q, CHEN Z H, et al. Tiled convolutional neural networks[C]// Proceedings of the 23rd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2010: 1279-1287. |
20 | ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8689. Cham: Springer, 2014: 818-833. |
21 | YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[EB/OL]. (2016-04-30) [2021-06-20].. 10.4236/psych.2020.1110096 |
22 | NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1520-1528. 10.1109/iccv.2015.178 |
23 | CHEN R, WANG M L, LAI Y. Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network[J]. PLoS ONE, 2020, 15(7): No.e0235783. 10.1371/journal.pone.0235783 |
24 | FUKUSHIMA K, MIYAKE S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position[J]. Pattern Recognition, 1982, 15(6): 455-469. 10.1016/0031-3203(82)90024-3 |
25 | ZHANG J M, BARGAL S A, LIN Z, et al. Top-down neural attention by excitation backprop[J]. International Journal of Computer Vision, 2018, 126(10): 1084-1102. 10.1007/s11263-017-1059-x |
26 | McCULLOCH W S, PITTS W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 1943, 5(4): 115-133. 10.1007/bf02478259 |
27 | XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. (2015-11-27) [2021-06-20].. |
28 | CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by Exponential Linear Units (ELUs)[EB/OL]. (2016-02-22) [2021-06-20].. |
29 | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C/OL]// Proceedings of the 30th International Conference on Machine Learning. [2021-06-20].. |
30 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 2015 International Conference on Machine Learning. New York: JMLR.org, 2015: 448-456. |
31 | GRAHAM B. Fractional max-pooling[EB/OL]. (2015-05-12) [2021-06-20].. |
32 | ZHAI S F, WU H, KUMAR A, et al. S3Pool: pooling with stochastic spatial sampling[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4003-4033. |
33 | KIM K J, KIM P K, CHUNG Y S, et al. Performance enhancement of YOLOv3 by adding prediction layers with spatial pyramid pooling for vehicle detection[C]// Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway:IEEE, 2018: 1-6. 10.1109/avss.2018.8639438 |
34 | RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. 10.1007/s11263-015-0816-y |
35 | LeCUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. 10.1109/5.726791 |
36 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2818-2826. 10.1109/cvpr.2016.308 |
37 | SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017:4278-4284. |
38 | SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. 10.1109/cvpr.2018.00474 |
39 | HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324. 10.1109/iccv.2019.00140 |
40 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. 10.1016/s0262-4079(17)32358-8 |
41 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03) [2021-06-20].. |
42 | TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 10347-10357. 10.1109/iccv48922.2021.00091 |
43 | WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[EB/OL]. (2021-02-24) [2021-06-20] . 10.1109/iccv48922.2021.00061 |
44 | LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[EB/OL]. (2021-03-25) [2021-06-20].. 10.1109/iccv48922.2021.00986 |
[1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[2] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[3] | Xin YANG, Xueni CHEN, Chunjiang WU, Shijie ZHOU. Short-term traffic flow prediction of urban highway based on variant residual model and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2947-2951. |
[4] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[5] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[6] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[7] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[8] | Shuai FU, Xiaoying GUO, Ruyi BAI, Tao YAN, Bin CHEN. Age estimation method combining improved CloFormer model and ordinal regression [J]. Journal of Computer Applications, 2024, 44(8): 2372-2380. |
[9] | Tong CHEN, Fengyu YANG, Yu XIONG, Hong YAN, Fuxing QIU. Construction method of voiceprint library based on multi-scale frequency-channel attention fusion [J]. Journal of Computer Applications, 2024, 44(8): 2407-2413. |
[10] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[11] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[12] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[13] | Hong CHEN, Bing QI, Haibo JIN, Cong WU, Li’ang ZHANG. Class-imbalanced traffic abnormal detection based on 1D-CNN and BiGRU [J]. Journal of Computer Applications, 2024, 44(8): 2493-2499. |
[14] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[15] | Dongwei WANG, Baichen LIU, Zhi HAN, Yanmei WANG, Yandong TANG. Deep network compression method based on low-rank decomposition and vector quantization [J]. Journal of Computer Applications, 2024, 44(7): 1987-1994. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||