Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 2975-2989.DOI: 10.11772/j.issn.1001-9081.2021081542
• Artificial intelligence • Next Articles
Chunming MA1, Xiuhong LI1, Zhe LI2, Huiru WANG1, Dan YANG1
Received:
2021-08-31
Revised:
2021-12-08
Accepted:
2021-12-09
Online:
2022-10-14
Published:
2022-10-10
Contact:
Xiuhong LI
About author:
MA Chunming, born in 1997, M. S. candidate. His research interests include natural language processing, event extraction.Supported by:
马春明1, 李秀红1, 李哲2, 王惠茹1, 杨丹1
通讯作者:
李秀红
作者简介:
第一联系人:马春明(1997—),男,四川绵阳人,硕士研究生,主要研究方向:自然语言处理、事件抽取基金资助:
CLC Number:
Chunming MA, Xiuhong LI, Zhe LI, Huiru WANG, Dan YANG. Survey of event extraction[J]. Journal of Computer Applications, 2022, 42(10): 2975-2989.
马春明, 李秀红, 李哲, 王惠茹, 杨丹. 事件抽取综述[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 2975-2989.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021081542
方法 | 语料库类别 | 训练次数 | 正面测试语料库 | 负面测试语料库 | 准确率/% | ||
---|---|---|---|---|---|---|---|
所有分类文档 | 正确分类文档 | 所有分类文档 | 正确分类文档 | ||||
基于支持向量机 | 中奖欺诈 | 57 | 58 | 46 | 58 | 42 | 74.1 |
网络色情 | 36 | 36 | 32 | 36 | 27 | 81.9 | |
非法交易 | 49 | 48 | 41 | 48 | 36 | 80.2 | |
基于事件本体和支持向量机 | 中奖欺诈 | 57 | 58 | 52 | 58 | 45 | 83.6 |
网络色情 | 36 | 36 | 34 | 36 | 28 | 86.1 | |
非法交易 | 49 | 48 | 43 | 48 | 39 | 85.4 |
Tab. 1 Text classification results based on support vector machine and based on event ontology+support vector machine
方法 | 语料库类别 | 训练次数 | 正面测试语料库 | 负面测试语料库 | 准确率/% | ||
---|---|---|---|---|---|---|---|
所有分类文档 | 正确分类文档 | 所有分类文档 | 正确分类文档 | ||||
基于支持向量机 | 中奖欺诈 | 57 | 58 | 46 | 58 | 42 | 74.1 |
网络色情 | 36 | 36 | 32 | 36 | 27 | 81.9 | |
非法交易 | 49 | 48 | 41 | 48 | 36 | 80.2 | |
基于事件本体和支持向量机 | 中奖欺诈 | 57 | 58 | 52 | 58 | 45 | 83.6 |
网络色情 | 36 | 36 | 34 | 36 | 28 | 86.1 | |
非法交易 | 49 | 48 | 43 | 48 | 39 | 85.4 |
源 | words | files | ||||||
---|---|---|---|---|---|---|---|---|
1P | DUAL | ADJ | NORM | 1P | DUAL | ADJ | NORM | |
合计 | 303 833 | 297 185 | 216 545 | 259 889 | 666 | 650 | 535 | 599 |
NW | 60 658 | 57 807 | 33 459 | 48 399 | 128 | 124 | 81 | 106 |
BN | 59 239 | 58 144 | 52 444 | 55 967 | 239 | 234 | 217 | 226 |
BC | 46 612 | 46 110 | 33 874 | 40 415 | 68 | 67 | 52 | 60 |
WL | 45 210 | 43 648 | 35 529 | 37 897 | 127 | 122 | 114 | 119 |
UN | 45 161 | 44 473 | 26 371 | 37 366 | 58 | 57 | 37 | 49 |
CTS | 47 003 | 47 003 | 34 868 | 39 845 | 46 | 46 | 34 | 39 |
Tab. 2 Annotation status of English data sources
源 | words | files | ||||||
---|---|---|---|---|---|---|---|---|
1P | DUAL | ADJ | NORM | 1P | DUAL | ADJ | NORM | |
合计 | 303 833 | 297 185 | 216 545 | 259 889 | 666 | 650 | 535 | 599 |
NW | 60 658 | 57 807 | 33 459 | 48 399 | 128 | 124 | 81 | 106 |
BN | 59 239 | 58 144 | 52 444 | 55 967 | 239 | 234 | 217 | 226 |
BC | 46 612 | 46 110 | 33 874 | 40 415 | 68 | 67 | 52 | 60 |
WL | 45 210 | 43 648 | 35 529 | 37 897 | 127 | 122 | 114 | 119 |
UN | 45 161 | 44 473 | 26 371 | 37 366 | 58 | 57 | 37 | 49 |
CTS | 47 003 | 47 003 | 34 868 | 39 845 | 46 | 46 | 34 | 39 |
源 | 中文 | 阿拉伯文 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
chars | files | words | files | |||||||||
1P | DUAL | ADJ | 1P | DUAL | ADJ | 1P | DUAL | ADJ | 1P | DUAL | ADJ | |
合计 | 334 121 | 325 834 | 307 991 | 687 | 671 | 633 | 112 233 | 103 504 | 100 114 | 433 | 409 | 403 |
NW | 127 319 | 124 175 | 121 797 | 248 | 242 | 238 | 61 287 | 56 158 | 53 026 | 239 | 226 | 221 |
BN | 134 963 | 133 696 | 120 513 | 332 | 328 | 298 | 29 259 | 27 165 | 26 907 | 134 | 128 | 127 |
WL | 71 839 | 68 063 | 65 681 | 107 | 101 | 97 | 21 687 | 20 181 | 20 181 | 60 | 55 | 55 |
Tab. 3 Annotation status of Chinese and Arabic data sources
源 | 中文 | 阿拉伯文 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
chars | files | words | files | |||||||||
1P | DUAL | ADJ | 1P | DUAL | ADJ | 1P | DUAL | ADJ | 1P | DUAL | ADJ | |
合计 | 334 121 | 325 834 | 307 991 | 687 | 671 | 633 | 112 233 | 103 504 | 100 114 | 433 | 409 | 403 |
NW | 127 319 | 124 175 | 121 797 | 248 | 242 | 238 | 61 287 | 56 158 | 53 026 | 239 | 226 | 221 |
BN | 134 963 | 133 696 | 120 513 | 332 | 328 | 298 | 29 259 | 27 165 | 26 907 | 134 | 128 | 127 |
WL | 71 839 | 68 063 | 65 681 | 107 | 101 | 97 | 21 687 | 20 181 | 20 181 | 60 | 55 | 55 |
方法 | 类别 | R | P | F |
---|---|---|---|---|
文献[ | 训练 | 43.06 | 58.29 | 49.53 |
测试 | 38.91 | 52.36 | 44.64 | |
文献[ | 训练 | 57.14 | 64.22 | 60.48 |
测试 | 54.86 | 69.29 | 61.24 |
Tab. 4 Comparison of experimental results of different methods under same features
方法 | 类别 | R | P | F |
---|---|---|---|---|
文献[ | 训练 | 43.06 | 58.29 | 49.53 |
测试 | 38.91 | 52.36 | 44.64 | |
文献[ | 训练 | 57.14 | 64.22 | 60.48 |
测试 | 54.86 | 69.29 | 61.24 |
事件类别 | 类别 | P | R | F |
---|---|---|---|---|
8类事件类别 | 测试 | 81.65 | 73.62 | 77.43 |
训练 | 84.34 | 75.79 | 79.84 | |
33类事件子类别 | 测试 | 74.24 | 65.34 | 69.51 |
训练 | 76.35 | 64.26 | 69.79 |
Tab. 5 Experimental results of literature[2] method on different types of events
事件类别 | 类别 | P | R | F |
---|---|---|---|---|
8类事件类别 | 测试 | 81.65 | 73.62 | 77.43 |
训练 | 84.34 | 75.79 | 79.84 | |
33类事件子类别 | 测试 | 74.24 | 65.34 | 69.51 |
训练 | 76.35 | 64.26 | 69.79 |
模型 | ACE2005 | TAC2005 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
事件触发识别 | 事件触发分类 | 事件参数识别 | 参数角色分类 | 事件触发识别 | 事件触发分类 | |||||||||||||
P | R | F | P | R | F | P | R | F | P | R | F | P | R | F | P | R | F | |
MEM[ | 73.1 | 65.4 | 69.0 | 70.1 | 63.3 | 66.5 | 75.0 | 20.3 | 31.9 | 71.0 | 19.3 | 30.3 | 69.7 | 46.8 | 56.0 | 65.4 | 44.5 | 53.0 |
DMCNN[ | 79.6 | 67.2 | 72.9 | 74.3 | 62.9 | 68.1 | 69.1 | 51.8 | 59.2 | 62.8 | 45.0 | 52.4 | 77.4 | 48.7 | 59.8 | 71.3 | 45.8 | 55.8 |
HPNet[ | 81.3 | 77.2 | 79.2 | 80.1 | 75.7 | 77.8 | 70.2 | 53.8 | 60.9 | 64.6 | 50.7 | 56.8 | 78.2 | 55.6 | 65.0 | 70.9 | 54.8 | 61.8 |
Tab. 6 Results comparison of different models on ACE2005 and TAC2015 datasets
模型 | ACE2005 | TAC2005 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
事件触发识别 | 事件触发分类 | 事件参数识别 | 参数角色分类 | 事件触发识别 | 事件触发分类 | |||||||||||||
P | R | F | P | R | F | P | R | F | P | R | F | P | R | F | P | R | F | |
MEM[ | 73.1 | 65.4 | 69.0 | 70.1 | 63.3 | 66.5 | 75.0 | 20.3 | 31.9 | 71.0 | 19.3 | 30.3 | 69.7 | 46.8 | 56.0 | 65.4 | 44.5 | 53.0 |
DMCNN[ | 79.6 | 67.2 | 72.9 | 74.3 | 62.9 | 68.1 | 69.1 | 51.8 | 59.2 | 62.8 | 45.0 | 52.4 | 77.4 | 48.7 | 59.8 | 71.3 | 45.8 | 55.8 |
HPNet[ | 81.3 | 77.2 | 79.2 | 80.1 | 75.7 | 77.8 | 70.2 | 53.8 | 60.9 | 64.6 | 50.7 | 56.8 | 78.2 | 55.6 | 65.0 | 70.9 | 54.8 | 61.8 |
方法 | P | R | F |
---|---|---|---|
文献[ | 71.8 | 66.4 | 69.0 |
文献[ | 75.6 | 63.6 | 69.1 |
文献[ | 75.3 | 64.4 | 69.4 |
ANN[ | 79.5 | 60.7 | 68.8 |
ANN+FrameNet[ | 77.6 | 65.2 | 70.7 |
Tab. 7 Effect of expanding training data with events automatically detected
方法 | P | R | F |
---|---|---|---|
文献[ | 71.8 | 66.4 | 69.0 |
文献[ | 75.6 | 63.6 | 69.1 |
文献[ | 75.3 | 64.4 | 69.4 |
ANN[ | 79.5 | 60.7 | 68.8 |
ANN+FrameNet[ | 77.6 | 65.2 | 70.7 |
方法 | 触发识别 | 触发标签 | 参数识别 | 参数标签 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F | P | R | F | P | R | F | P | R | F | |
基于词语 | 68.1 | 52.7 | 59.4 | 65.7 | 50.9 | 57.4 | 56.1 | 38.2 | 45.4 | 53.1 | 36.2 | 43.1 |
基于字符 | 82.4 | 50.6 | 62.7 | 78.8 | 48.3 | 59.9 | 64.4 | 36.4 | 46.5 | 60.6 | 34.3 | 43.8 |
Tab. 8 Performance comparison between methods based on words and characters
方法 | 触发识别 | 触发标签 | 参数识别 | 参数标签 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | R | F | P | R | F | P | R | F | P | R | F | |
基于词语 | 68.1 | 52.7 | 59.4 | 65.7 | 50.9 | 57.4 | 56.1 | 38.2 | 45.4 | 53.1 | 36.2 | 43.1 |
基于字符 | 82.4 | 50.6 | 62.7 | 78.8 | 48.3 | 59.9 | 64.4 | 36.4 | 46.5 | 60.6 | 34.3 | 43.8 |
事件抽取任务 | 分类 | 特点 |
---|---|---|
事件表示 | 离散的事件表示 | 事件表示为由事件元素构成的元组;面临稀疏性的问题 |
稠密的事件表示 | 以预训练的词向量为基础;根据事件结构对事件元素的词向量进行语义组合; 为事件计算低维、稠密的向量表示 | |
元事件抽取 | 基于模式匹配的元事件抽取 | 在特定领域内产生更好的结果;系统的可移植性不好;需要建模,既费时又费力 |
基于机器学习的元事件抽取 | 分类简短,大部分是完整的句子;由于是事件表述语句,因此语句中包含的信息量很大 | |
基于神经网络的元事件抽取 | 一种有监督多元分类任务;抽取方法包括2个步骤:特征选择和分类模型 | |
主题事件抽取 | 基于事件框架的主题事件抽取 | 通过定义结构化、层次化的事件框架来指导主题事件的抽取;利用框架来概括事件信息 |
基于本体的主题事件抽取 | 根据本体所描述的概念、关系、层次结构、实例等来抽取待抽取文本中所包含的侧面事件及 相关实体信息 | |
跨语言事件抽取 | 中文事件抽取 | 中文语言词语间没有显式间隔,而分词会带明显的错误和误差; 存在触发词分词不一致、数据稀疏问题 |
英文事件抽取 | 核心和主流方法是基于统计和机器学习的方法 | |
跨语言事件抽取 | 在多种语言上进行训练,并利用依赖于语言的特征和不依赖于语言的特征来提高性能 |
Tab. 9 Summary of event extraction technologies
事件抽取任务 | 分类 | 特点 |
---|---|---|
事件表示 | 离散的事件表示 | 事件表示为由事件元素构成的元组;面临稀疏性的问题 |
稠密的事件表示 | 以预训练的词向量为基础;根据事件结构对事件元素的词向量进行语义组合; 为事件计算低维、稠密的向量表示 | |
元事件抽取 | 基于模式匹配的元事件抽取 | 在特定领域内产生更好的结果;系统的可移植性不好;需要建模,既费时又费力 |
基于机器学习的元事件抽取 | 分类简短,大部分是完整的句子;由于是事件表述语句,因此语句中包含的信息量很大 | |
基于神经网络的元事件抽取 | 一种有监督多元分类任务;抽取方法包括2个步骤:特征选择和分类模型 | |
主题事件抽取 | 基于事件框架的主题事件抽取 | 通过定义结构化、层次化的事件框架来指导主题事件的抽取;利用框架来概括事件信息 |
基于本体的主题事件抽取 | 根据本体所描述的概念、关系、层次结构、实例等来抽取待抽取文本中所包含的侧面事件及 相关实体信息 | |
跨语言事件抽取 | 中文事件抽取 | 中文语言词语间没有显式间隔,而分词会带明显的错误和误差; 存在触发词分词不一致、数据稀疏问题 |
英文事件抽取 | 核心和主流方法是基于统计和机器学习的方法 | |
跨语言事件抽取 | 在多种语言上进行训练,并利用依赖于语言的特征和不依赖于语言的特征来提高性能 |
1 | 谭红叶. 中文事件抽取关键技术研究[D]. 哈尔滨:哈尔滨工业大学 2008:14-89. |
TAN H Y. Research on Chinese event extraction[D]. Harbin: Harbin Institute of Technology, 2008:14-89. | |
2 | 许红磊,陈锦秀,周昌乐,等. 自动识别事件类别的中文事件抽取技术研究[J]. 心智与计算, 2010, 4(1):34-44. |
XU H L, CHEN J X, ZHOU C L, et al. Research on event type identification for Chinese event extraction[J]. Mind and Computation, 2010, 4(1):34-44. | |
3 | AHN D. The stages of event extraction[C]// Proceedings of the 2006 Workshop on Annotating and Reasoning about Time and Events. Stroudsburg, PA: Association for Computational Linguistics, 2006:1-8. 10.3115/1629235.1629236 |
4 | NAUGHTON M, KUSHMERICK N, CARTHY J. Event extraction from heterogeneous news sources[C]// Proceedings of the 2006 AAAI Workshop on Event Extraction and Synthesis. Menlo Park, CA: AAAI Press, 2006:1-6. |
5 | CHEN Y B, XU L H, LIU K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2015:167-176. 10.3115/v1/p15-1017 |
6 | FENG X C, QIN B, LIU T. A language-independent neural network for event detection[J]. Science China Information Sciences, 2018, 61(9): No.092106. 10.1007/s11432-017-9359-x |
7 | DU X Y, CARDIE C. Document-level event role filler extraction using multi-granularity contextualized encoding[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2020:8010-8020. 10.18653/v1/2020.acl-main.714 |
8 | WANG Z Q, WANG X Z, HAN X, et al. CLEVE: contrastive pre-training for event extraction[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2021:6283-6297. 10.18653/v1/2021.acl-long.491 |
9 | 杨选选,张蕾. 基于语义角色和概念图的信息抽取模型[J]. 计算机应用, 2010, 30(2):411-414. 10.3724/sp.j.1087.2010.00411 |
YANG X X, ZHANG L. Information extraction based on semantic role and concept graph[J]. Journal of Computer Applications, 2010, 30(2):411-414. 10.3724/sp.j.1087.2010.00411 | |
10 | LI C H, HU Y, ZHONG Z M. An event ontology construction approach to web crime mining[C]// Proceedings of the 7th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway: IEEE, 2010:2441-2445. 10.1109/fskd.2010.5569290 |
11 | 丁效,宋凡,秦兵,等. 音乐领域典型事件抽取方法研究[J]. 中文信息学报, 2011, 25(2):15-20. 10.3969/j.issn.1003-0077.2011.02.003 |
DING X, SONG F, QIN B, et al. Research on typical event extraction method in the field of music[J]. Journal of Chinese Information Processing, 2011, 25(2):15-20. 10.3969/j.issn.1003-0077.2011.02.003 | |
12 | 吉久明,陈锦辉,李楠,等. 中文事件抽取研究文献之算法效果分析[J]. 现代情报, 2015, 35(12): 3-10. 10.3969/j.issn.1008-0821.2015.12.001 |
JI J M, CHEN J H, LI N, et al. Effect analysis of Chinese event extraction method based on literatures[J]. Journal of Modern Information, 2015, 35(12): 3-10. 10.3969/j.issn.1008-0821.2015.12.001 | |
13 | 吴奇. 基于领域本体的Web实体事件抽取问题研究[D]. 济南:山东大学, 2014:1-6. |
WU Q. Research on domain ontology-based Web entity event extraction[D]. Jinan: Shandong University, 2014:1-6. | |
14 | 赵小明,朱洪波,陈黎,等. 基于多分类器的金融领域多元关系信息抽取算法[J]. 计算机工程与设计, 2011, 32(7):2348-2351. |
ZHAO X M, ZHU H B, CHEN L, et al. Multi-relation extraction in finance based on multi-classifier[J]. Computer Engineering and Design, 2011, 32(7):2348-2351. | |
15 | HAN S Q, HAO X L, HUANG H L. An event-extraction approach for business analysis from online Chinese news[J]. Electronic Commerce Research and Applications, 2018, 28:244-260. 10.1016/j.elerap.2018.02.006 |
16 | WANG A R, WANG J, LIN H F, et al. A multiple distributed representation method based on neural network for biomedical event extraction[J]. BMC Medical Informatics and Decision Making, 2017, 17(S3): No.171. 10.1186/s12911-017-0563-9 |
17 | KIM J. Supervenience and Mind: Selected Philosophical Essays[M]. New York: Cambridge University Press, 1993:336-357. |
18 | RADINSKY K, DAVIDOVICH S, MARKOVITCH S. Learning causality for news events prediction[C]// Proceedings of the 21st International Conference on World Wide Web. New York: ACM, 2012: 909-918. 10.1145/2187836.2187958 |
19 | DING X, ZHANG Y, LIU T, et al. Using structured events to predict stock price movement: an empirical investigation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014:1415-1425. 10.3115/v1/d14-1148 |
20 | CHAMBERS N, JURAFSKY D. Unsupervised learning of narrative event chains[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2008:789-797. 10.3115/1557690 |
21 | WEBER N, BALASUBRAMANIAN N, CHAMBERS N. Event representations with tensor-based compositions[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:4946-4953. 10.1609/aaai.v32i1.11932 |
22 | LI Z Y, DING X, LIU T. Constructing narrative event evolutionary graph for script event prediction[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018:4201-4207. 10.24963/ijcai.2018/584 |
23 | GRANROTH-WILDING M, CLARK S. What happens next? event prediction using a compositional neural network model[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2016:2727-2733. 10.1609/aaai.v30i1.10344 |
24 | LEE I T, GOLDWASSER D. FEEL: featured event embedding learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:4840-4847. 10.1609/aaai.v32i1.11936 |
25 | TILK O, DEMBERG V, SAYEED A, et al. Event participant modelling with neural networks[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016:171-182. 10.18653/v1/d16-1017 |
26 | HONG X D, SAYEED A, DEMBERG V. Learning distributed event representations with a multi-task approach[C]// Proceedings of the 7th Joint Conference on Lexical and Computational Semantics. Stroudsburg, PA: Association for Computational Linguistics, 2018: 11-21. 10.18653/v1/s18-2002 |
27 | DING X, ZHANG Y, LIU T, et al. Deep learning for event-driven stock prediction[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015:2327-2333. |
28 | DING X, LIAO K, LIU T, et al. Event representation learning enhanced with external commonsense knowledge[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019: 4894-4903. 10.18653/v1/d19-1495 |
29 | 吴平博,陈群秀,马亮. 基于事件框架的事件相关文档的智能检索研究[J]. 中文信息学报, 2003, 17(6):25-30, 59. 10.3969/j.issn.1003-0077.2003.06.004 |
WU P B, CHEN Q X, MA L. Study on intelligent retrieval of event relevant documents based on event frame[J]. Journal of Chinese Information Processing, 2003, 17(6): 25-30, 59. 10.3969/j.issn.1003-0077.2003.06.004 | |
30 | 姜吉发. 一种跨语句汉语事件信息抽取方法[J]. 计算机工程, 2005, 31(2):27-29, 66. 10.3969/j.issn.1000-3428.2005.02.011 |
JIANG J F. A method to do Chinese event IE from a multiple sentences’ event narration[J]. Computer Engineering, 2005, 31(2):27-29, 66. 10.3969/j.issn.1000-3428.2005.02.011 | |
31 | 贾美英,杨炳儒,郑德权,等. 基于模式匹配的军事演习情报信息抽取[J]. 现代图书情报技术, 2009(9):70-75. 10.3969/j.issn.1003-3513.2009.09.012 |
JIA M Y, YANG B R, ZHENG D Q, et al. Sham battle information extraction based on pattern matching[J]. New Technology of Library and Information Service, 2009(9): 70-75. 10.3969/j.issn.1003-3513.2009.09.012 | |
32 | LI Q, JI H, HUANG L. Joint event extraction via structured prediction with global features[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2013: 73-82. |
33 | ZHANG J C, QIN Y X, ZHANG Y, et al. Extracting entities and events as a single task using a transition-based neural model[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019:5422-5428. 10.24963/ijcai.2019/753 |
34 | LYBARGER K, OSTENDORF M, THOMPSON M, et al. Extracting COVID-19 diagnoses and symptoms from clinical text: a new annotated corpus and neural event extraction framework[J]. Journal of Biomedical Informatics, 2021, 117: No.103761. 10.1016/j.jbi.2021.103761 |
35 | CHIEU H L, NG H T. A maximum entropy approach to information extraction from semi-structured and free text[C]// Proceedings of the 18th National Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2002: 786-791. 10.3115/1072228.1072253 |
36 | LLORENS H, SAQUETE E, NAVARRO-COLORADO B. TimeML events recognition and classification: learning CRF models with semantic roles[C]// Proceedings of the 23rd International Conference on Computational Linguistics. [S.l.]: COLING 2010 Organizing Committee, 2010:725-733. 10.1007/978-3-642-12550-8_19 |
37 | 赵妍妍,秦兵,车万翔,等. 中文事件抽取技术研究[J]. 中文信息学报, 2008, 22(1):3-8. 10.3969/j.issn.1003-0077.2008.01.001 |
ZHAO Y Y, QIN B, CHE W X, et al. Research on Chinese event extraction[J]. Journal of Chinese Information Processing 2008, 22(1):3-8. 10.3969/j.issn.1003-0077.2008.01.001 | |
38 | LIU J, CHEN Y B, LIU K, et al. Event extraction as machine reading comprehension[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2020: 1641-1651. 10.18653/v1/2020.emnlp-main.128 |
39 | LI S, JI H, HAN J W. Document-level event argument extraction by conditional generation[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2021: 894-908. 10.18653/v1/2021.naacl-main.69 |
40 | LIU S L, CHEN Y B, LIU K, et al. Exploiting argument information to improve event detection via supervised attention mechanisms[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017:1789-1798. 10.18653/v1/p17-1164 |
41 | NGUYEN T H, CHO K, GRISHMAN R. Joint event extraction via recurrent neural networks[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2016:300-309. 10.18653/v1/n16-1034 |
42 | YANG B S, MITCHELL T M. Joint extraction of events and entities within a document context[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2016:289-299. 10.18653/v1/n16-1033 |
43 | TANG Z, HAHN-POWELL G, SURDEANU M. Exploring interpretability in event extraction: multitask learning of a neural event classifier and an explanation decoder[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop. Stroudsburg, PA: Association for Computational Linguistics, 2020:169-175. 10.18653/v1/2020.acl-srw.23 |
44 | HUANG P X, ZHAO X, TAKANOBU R, et al. Joint event extraction with hierarchical policy network[C]// Proceedings of the 28th International Conference on Computational Linguistics. [S.l.]: International Committee on Computational Linguistics, 2020:2653-2664. 10.18653/v1/2020.coling-main.239 |
45 | LIU S L, CHEN Y B, HE S Z, et al. Leveraging FrameNet to improve automatic event detection[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016:2134-2143. 10.18653/v1/p16-1201 |
46 | CHEN Y B, LIU S L, ZHANG X, et al. Automatically labeled data generation for large scale event extraction[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017:409-419. 10.18653/v1/p17-1038 |
47 | ZENG Y, FENG Y S, MA R, et al. Scale up event extraction learning via automatic training data generation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018:6045-6052. 10.1609/aaai.v32i1.12030 |
48 | LI Q, PENG H, LI J X, et al. Reinforcement learning-based dialogue guided event extraction to exploit argument relations[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2022, 30:520-533. 10.1109/taslp.2021.3138670 |
49 | DU X Y, CARDIE C. Event extraction by answering (almost) natural questions[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2020:671-683. 10.18653/v1/2020.emnlp-main.49 |
50 | LEE C S, CHEN Y J, JIAN Z W. Ontology-based fuzzy event extraction agent for Chinese e-news summarization[J]. Expert Systems with Applications, 2003, 25(3):431-447. 10.1016/s0957-4174(03)00062-9 |
51 | MAO Q R, LI X, PENG H, et al. Event prediction based on evolutionary event ontology knowledge[J]. Future Generation Computer Systems, 2021, 115: 76-89. 10.1016/j.future.2020.07.041 |
52 | CHEN Z, JI H. Language specific issue and feature exploration in Chinese event extraction[C]// Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers. Stroudsburg, PA: Association for Computational Linguistics, 2009:209-212. 10.3115/1620853.1620910 |
53 | ZENG Y, YANG H H, FENG Y S, et al. A convolution BiLSTM neural network model for Chinese event extraction[C]// Proceedings of the 2016 International Conference on Computer Processing of Oriental Languages. Cham: Springer, 2016: 275-287. 10.1007/978-3-319-50496-4_23 |
54 | LI P F, ZHOU G D, ZHU Q M, et al. Employing compositional semantics and discourse consistency in Chinese event extraction[C]// Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA: Association for Computational Linguistics, 2012: 1006-1016. |
55 | JI H, GRISHMAN R. Refining event extraction through unsupervised cross-document inference[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2008: 254-262. |
56 | LIAO S S, GRISHMAN R. Using document level cross-event inference to improve event extraction[C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2010:789-797. |
57 | JI H. Cross-lingual predicate cluster acquisition to improve bilingual event extraction by inductive learning[C]// Proceedings of the 2009 Workshop on Unsupervised and Minimally Supervised Learning of Lexical Semantics. Stroudsburg, PA: Association for Computational Linguistics, 2009:27-35. 10.3115/1641968.1641972 |
58 | ZHU Z, LI S S, ZHOU G D, et al. Bilingual event extraction: a case study on trigger type determination[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2014:842-847. 10.3115/v1/p14-2136 |
59 | HSI A, YANG Y M, CARBONELL J, et al. Leveraging multilingual training for limited resource event extraction[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: COLING 2016 Organizing Committee, 2016:1201-1210. |
60 | LIU J, CHEN Y B, LIU K, et al. Neural cross-lingual event detection with minimal parallel resources[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019:738-748. 10.18653/v1/d19-1068 |
61 | SUBBURATHINAM A, LU D, JI H, et al. Cross-lingual structure transfer for relation and event extraction[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2019:313-325. 10.18653/v1/d19-1030 |
62 | AHMAD W U, PENG N Y, CHANG K W. GATE: graph attention transformer encoder for cross-lingual relation and event extraction[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021:12462-12470. 10.1609/aaai.v35i14.17478 |
[1] | Xiaoxia JIANG, Ruizhang HUANG, Ruina BAI, Lina REN, Yanping CHEN. Deep event clustering method based on event representation and contrastive learning [J]. Journal of Computer Applications, 2024, 44(6): 1734-1742. |
[2] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[3] | Xujian ZHAO, Chongwei WANG, Junli WANG. Key event extraction method from microblog by integrating social influence and temporal distribution [J]. Journal of Computer Applications, 2022, 42(9): 2667-2673. |
[4] | Yuanlong WANG, Xiaomin LIU, Hu ZHANG. Machine reading comprehension model based on event representation [J]. Journal of Computer Applications, 2022, 42(7): 1979-1984. |
[5] | WU Guoliang, XU Jining. Chinese emergency event extraction method based on named entity recognition task feedback enhancement [J]. Journal of Computer Applications, 2021, 41(7): 1891-1896. |
[6] | . An Approach of Chinese Event Information Fusion Based on Co-reference [J]. Journal of Computer Applications, 2009, 29(08): 2264-2267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||