Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (7): 1979-1984.DOI: 10.11772/j.issn.1001-9081.2021050719
Special Issue: 人工智能
• Artificial intelligence • Next Articles
Yuanlong WANG(), Xiaomin LIU, Hu ZHANG
Received:
2021-05-07
Revised:
2022-02-21
Accepted:
2022-02-25
Online:
2022-03-15
Published:
2022-07-10
Contact:
Yuanlong WANG
About author:
WANG Yuanlong, born in 1983, Ph. D., associate professor. His research interests include natural language processing, machine learning.Supported by:
通讯作者:
王元龙
作者简介:
王元龙(1983—),男,山西大同人,副教授,博士,CCF会员,主要研究方向:自然语言处理、机器学习基金资助:
CLC Number:
Yuanlong WANG, Xiaomin LIU, Hu ZHANG. Machine reading comprehension model based on event representation[J]. Journal of Computer Applications, 2022, 42(7): 1979-1984.
王元龙, 刘晓敏, 张虎. 基于事件表示的机器阅读理解模型[J]. 《计算机应用》唯一官方网站, 2022, 42(7): 1979-1984.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021050719
框架 | 词元 |
---|---|
时间测量 | 秒,分钟,小时,天,周,月,年,世纪 |
时间向量 | 先,先期,以还,后,前,以前,以后,之后,之前,从此,从头,从小,先,从,后来,今后,先前 |
时间跨度 | 日子,日月,时间,时候,时期,周,时代,时辰,时光,时长,时段,平生,生平 |
历法单位 | 秒,分,时,天,日,周,月,年,世纪,早上,凌晨,黄昏,中午,下午,晚上,年代,春,夏,秋,冬,春季,夏季,秋季,冬季,公元,学期,学年,今日,今天,今年,周末 |
时量场景 | 期间,时段,时期,过程 |
时间亚区 | 开始,早期,结束,晚期,中间,开端,后,前,早,晚 |
相对时间 | 后,后来,前,前期,之前,之后,以前,同时,过后,过去,当,迟,晚,早,准时,跟着,接着,迟到,提前 |
Tab. 1 Time related framework description
框架 | 词元 |
---|---|
时间测量 | 秒,分钟,小时,天,周,月,年,世纪 |
时间向量 | 先,先期,以还,后,前,以前,以后,之后,之前,从此,从头,从小,先,从,后来,今后,先前 |
时间跨度 | 日子,日月,时间,时候,时期,周,时代,时辰,时光,时长,时段,平生,生平 |
历法单位 | 秒,分,时,天,日,周,月,年,世纪,早上,凌晨,黄昏,中午,下午,晚上,年代,春,夏,秋,冬,春季,夏季,秋季,冬季,公元,学期,学年,今日,今天,今年,周末 |
时量场景 | 期间,时段,时期,过程 |
时间亚区 | 开始,早期,结束,晚期,中间,开端,后,前,早,晚 |
相对时间 | 后,后来,前,前期,之前,之后,以前,同时,过后,过去,当,迟,晚,早,准时,跟着,接着,迟到,提前 |
方法 | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | CIDEr |
---|---|---|---|---|---|
句子排序方法 | 56.3 | 38.2 | 23.4 | 12.4 | 46.3 |
文献[ | 57.0 | 39.2 | 23.9 | 13.1 | 47.0 |
本文方法 | 64.2 | 45.6 | 27.1 | 16.5 | 55.3 |
Tab.2 Experimental results comparison of different methods
方法 | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | CIDEr |
---|---|---|---|---|---|
句子排序方法 | 56.3 | 38.2 | 23.4 | 12.4 | 46.3 |
文献[ | 57.0 | 39.2 | 23.9 | 13.1 | 47.0 |
本文方法 | 64.2 | 45.6 | 27.1 | 16.5 | 55.3 |
1 | CHEN D Q, BOLTON J, MANNING C D. A thorough examination of the CNN/Daily Mail reading comprehension task[C]// Proceeding of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 2359-2367. 10.18653/v1/p16-1223 |
2 | CUI Y M, LIU T, CHEN Z P, et al. Consensus attention-based neural networks for Chinese reading comprehension[C]// Proceeding of the 26th International Conference on Computational Linguistics: Technical Papers. [S.l.]: The COLING 2016 Organizing Committee, 2016:1777-1786. 10.18653/v1/p17-1055 |
3 | RICHARDSON M, BURGES C J C, RENSHAW E. MCTest: a challenge dataset for the open-domain machine comprehension of text[C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2013: 193-203. |
4 | LAI G K, XIE Q Z, LIU H X, et al. RACE: large-scale Reading comprehension dataset from examinations[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017:785-794. 10.18653/v1/d17-1082 |
5 | RAJPURKAR P, ZHANG J, LOPYREV K, et al. SQuAD: 100,000+ questions for machine comprehension of text[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2016: 2383-2392. 10.18653/v1/d16-1264 |
6 | JOSHI M, CHOI E, WELD D S, et al. TriviaQA: a large scale distantly supervised challenge dataset for reading comprehension[C]// Proceeding of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 1601-1611. 10.18653/v1/p17-1147 |
7 | HE W, LIU K, LIU J, et al. DuReader: a Chinese reading comprehension dataset from real-world applications[C]// Proceedings of the 2018 Workshop on Machine Reading for Question Answering. Stroudsburg, PA: Association for Computational Linguistics, 2018:37-46. 10.18653/v1/w18-2605 |
8 | YANG Z L, QI P, ZHANG S Z, et al. HotpotQA: a dataset for diverse, explainable multi-hop question answering[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018:2369-2380. 10.18653/v1/d18-1259 |
9 | KOČISKÝ T, SCHWARZ J, BLUNSOM P, et al. The NarrativeQA reading comprehension challenge[J]. Transactions of the Association for Computational Linguistics, 2017, 6:317-328. 10.1162/tacl_a_00023 |
10 | 郭少茹,张虎,钱揖丽,等. 面向高考阅读理解的句子语义相关度[J]. 清华大学学报(自然科学版), 2017, 57(6):575-579, 585. |
GUO S R, ZHANG H, QIAN Y L, et al. Semantic relevancy between sentences for Chinese reading comprehension on college entrance examinations[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(6):575-579, 585. | |
11 | 王元龙,李茹,张虎,等. 阅读理解中因果关系类选项的研究[J]. 清华大学学报(自然科学版), 2018, 58(3):272-278. |
WANG Y L, LI R, ZHANG H, et al. Causal options in Chinese reading comprehension[J]. Journal of Tsinghua University (Science and Technology), 2018, 58(3):272-278. | |
12 | 王智强,李茹,梁吉业,等. 基于汉语篇章框架语义分析的阅读理解问答研究[J]. 计算机学报, 2016, 39(4): 795-807. 10.11897/SP.J.1016.2016.00795 |
WANG Z Q, LI R, LIANG J Y, et al. Research on question answering for reading comprehension based on Chinese discourse frame semantic parsing[J]. Chinese Journal of Computers, 2016, 39(4): 795-807. 10.11897/SP.J.1016.2016.00795 | |
13 | 谭红叶,赵红红,李茹. 面向阅读理解复杂问题的句子融合[J]. 中文信息学报, 2017, 31(1):8-16. |
TAN H Y, ZHAO H H, LI R. Sentence fusion for complex problems in reading comprehension[J]. Journal of Chinese Information Processing, 2017, 31(1):8-16. | |
14 | 张兆滨,王素格,陈鑫,等. 阅读理解中观点类问题的扩展研究[J]. 中文信息学报, 2020, 34(6): 89-96, 105. 10.3969/j.issn.1003-0077.2020.06.012 |
ZHANG Z B, WANG S G, CHEN X, et al. Question expansion for machine reading comprehension of opinion[J]. Journal of Chinese Information Processing, 2020, 34(6): 89-96, 105. 10.3969/j.issn.1003-0077.2020.06.012 | |
15 | 谭红叶,屈保兴. 面向多类型问题的阅读理解方法研究[J]. 中文信息学报, 2020, 34(6): 81-88. 10.3969/j.issn.1003-0077.2020.06.011 |
TAN H Y, QU B X. An approach to multi-type question machine reading comprehension[J]. Journal of Chinese Information Processing, 2020, 34(6):81-88. 10.3969/j.issn.1003-0077.2020.06.011 | |
16 | 杨陟卓,李春转,张虎,等. 基于CFN和篇章主题的概括型问答题的解答[J]. 中文信息学报, 2020, 34(12): 73-81. 10.3969/j.issn.1003-0077.2020.12.011 |
YANG Z Z, LI C Z, ZHANG H, et al. Question answering for overview questions based on CFN and discourse topic[J]. Journal of Chinese Information Processing, 2020, 34(12): 73-81. 10.3969/j.issn.1003-0077.2020.12.011 | |
17 | ZWANN R A, RADVANSKY G A, HILLIARD A E, et al. Constructing multidimensional situation models during reading[J]. Scientific Studies of Reading, 1998, 2(3):199-220. 10.1207/s1532799xssr0203_2 |
18 | HUANG L F, JI H, CHO K, et al. Zero-shot transfer learning for event extraction[C]// Proceeding of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 2160-2170. 10.18653/v1/p18-1201 |
19 | CHAMBERS N, JURAFSKY D. Unsupervised learning of narrative event chains[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2008:789-797. |
20 | PALMER T, GILDEA D, KINGSBURY P. The proposition bank: an annotated corpus of semantic roles[J]. Computational Linguistics, 2005, 31(1): 71-106. 10.1162/0891201053630264 |
21 | PRASAD R, MILTSAKAKI E, DINESH N, et al. The Penn Discourse TreeBank 2.0 annotation manual[R/OL]. (2007-12-17) [2021-02-12].. |
22 | KRUENGKRAI C, TORISAWA K, HASHIMOTO C, et al. Improving event causality recognition with multiple background knowledge sources using multi-column convolutional neural networks[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017:3466-3473. 10.1609/aaai.v31i1.11005 |
23 | KANG D, GANGAL V, LU A, et al. Detecting and explaining causes from text for a time series event[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017:2758-2767. 10.18653/v1/d17-1292 |
24 | 徐琳宏,林鸿飞,潘宇,等. 情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185. 10.3969/j.issn.1000-0135.2008.02.004 |
XU L H, LIN H F, PAN Y, et al. Constructing the affective lexicon ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 180-185. 10.3969/j.issn.1000-0135.2008.02.004 |
[1] | Qi SHUAI, Hairui WANG, Guifu ZHU. Chinese story ending generation model based on bidirectional contrastive training [J]. Journal of Computer Applications, 2024, 44(9): 2683-2688. |
[2] | Quanmei ZHANG, Runping HUANG, Fei TENG, Haibo ZHANG, Nan ZHOU. Automatic international classification of disease coding method incorporating heterogeneous information [J]. Journal of Computer Applications, 2024, 44(8): 2476-2482. |
[3] | Qing LIU, Yanping CHEN, Anqi ZOU, Ruizhang HUANG, Yongbin QIN. Boundary-aware approach to machine reading comprehension [J]. Journal of Computer Applications, 2024, 44(7): 2004-2010. |
[4] | Qianhui LU, Yu ZHANG, Mengling WANG, Tingwei WU, Yuzhong SHAN. Classification model of nuclear power equipment quality text based on improved recurrent pooling network [J]. Journal of Computer Applications, 2024, 44(7): 2034-2040. |
[5] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[6] | Xiaoxia JIANG, Ruizhang HUANG, Ruina BAI, Lina REN, Yanping CHEN. Deep event clustering method based on event representation and contrastive learning [J]. Journal of Computer Applications, 2024, 44(6): 1734-1742. |
[7] | Yao LIU, Yumeng LI, Miaomiao SONG. Cognitive graph based on business process [J]. Journal of Computer Applications, 2024, 44(6): 1699-1705. |
[8] | Longtao GAO, Nana LI. Aspect sentiment triplet extraction based on aspect-aware attention enhancement [J]. Journal of Computer Applications, 2024, 44(4): 1049-1057. |
[9] | Xianfeng YANG, Yilei TANG, Ziqiang LI. Aspect-level sentiment analysis model based on alternating‑attention mechanism and graph convolutional network [J]. Journal of Computer Applications, 2024, 44(4): 1058-1064. |
[10] | Yuliang ZHENG, Yunhua CHEN, Weijie BAI, Pinghua CHEN. Vehicle target detection by fusing event data and image frames [J]. Journal of Computer Applications, 2024, 44(3): 931-937. |
[11] | Baoshan YANG, Zhi YANG, Xingyuan CHEN, Bing HAN, Xuehui DU. Analysis of consistency between sensitive behavior and privacy policy of Android applications [J]. Journal of Computer Applications, 2024, 44(3): 788-796. |
[12] | Kaitian WANG, Qing YE, Chunlei CHENG. Classification method for traditional Chinese medicine electronic medical records based on heterogeneous graph representation [J]. Journal of Computer Applications, 2024, 44(2): 411-417. |
[13] | Wanting JI, Wenyi LU, Yuhang MA, Linlin DING, Baoyan SONG, Haolin ZHANG. Machine reading comprehension event detection based on relation-enhanced graph convolutional network [J]. Journal of Computer Applications, 2024, 44(10): 3288-3293. |
[14] | Yushan JIANG, Yangsen ZHANG. Large language model-driven stance-aware fact-checking [J]. Journal of Computer Applications, 2024, 44(10): 3067-3073. |
[15] | Chenghao FENG, Zhenping XIE, Bowen DING. Selective generation method of test cases for Chinese text error correction software [J]. Journal of Computer Applications, 2024, 44(1): 101-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||