| 1 | WU Q Z, ZHANG Q, WEI Z Y, et al. Math word problem solving with explicit numerical values[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and 11th International Joint Conference on Natural Language Processing. Stroudsburg, PA: ACL, 2021: 5859-5869.  10.18653/v1/2021.acl-long.455 | 
																													
																							| 2 | WU Q Z, ZHANG Q, FU J L, et al. A knowledge-aware sequence-to-tree network for math word problem solving[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2020: 7137-7146.  10.18653/v1/2020.emnlp-main.579 | 
																													
																							| 3 | ZHANG J P, WANG L, LEE R K W, et al. Graph-to-tree learning for solving math word problems[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 3928-3937.  10.18653/v1/2020.acl-main.362 | 
																													
																							| 4 | WANG Y, LIU X J, SHI S M. Deep neural solver for math word problems[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2017: 845-854.  10.18653/v1/d17-1088 | 
																													
																							| 5 | HUANG D Q, LIU J, LIN C Y, et al. Neural math word problem solver with reinforcement learning[C]// Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg, PA: ACL, 2018: 213-223. | 
																													
																							| 6 | WANG L, WANG Y, CAI D, et al. Translating a math word problem to an expression tree[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: ACL, 2018: 1064-1069.  10.18653/v1/d18-1132 | 
																													
																							| 7 | XIE Z P, SUN S C. A goal-driven tree-structured neural model for math word problems[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2019: 5299-5305.  10.24963/ijcai.2019/736 | 
																													
																							| 8 | 王伟,赵尔平,崔志远,等. 基于HowNet义原和Word2vec词向量表示的多特征融合消歧方法[J]. 计算机应用, 2021, 41(8): 2193-2198.  10.11772/j.issn.1001-9081.2020101625 | 
																													
																							|  | WANG W, ZHAO E P, CUI Z Y, et al. Disambiguation method of multi-feature fusion based on HowNet sememe and Word2vec word embedding representation[J]. Journal of Computer Applications, 2021, 41(8): 2193-2198.  10.11772/j.issn.1001-9081.2020101625 | 
																													
																							| 9 | 张继杰,杨艳,刘勇. 利用初始残差和解耦操作的自适应深层图卷积[J]. 计算机应用, 2022, 42(1): 9-15.  10.11772/j.issn.1001-9081.2021071289 | 
																													
																							|  | ZHANG J J, YANG Y, LIU Y. Adaptive deep graph convolution using initial residual and decoupling operations[J]. Journal of Computer Applications, 2022, 42(1): 9-15.  10.11772/j.issn.1001-9081.2021071289 | 
																													
																							| 10 | QIN J H, LIANG X F, HONG Y N, et al. Neural-symbolic solver for math word problems with auxiliary tasks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA: ACL, 2021:5870-5881.  10.18653/v1/2021.acl-long.456 | 
																													
																							| 11 | LIN X, HUANG Z Y, ZHAO H K, et al. HMS: a hierarchical solver with dependency-enhanced understanding for math word problem[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2021: 4232-4240.  10.1609/aaai.v35i5.16547 | 
																													
																							| 12 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. | 
																													
																							| 13 | LI J R, WANG L, ZHANG J P, et al. Modeling intra-relation in math word problems with different functional multi-head attentions[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2019: 6162-6167.  10.18653/v1/p19-1619 | 
																													
																							| 14 | LAN Y H, WANG L, ZHANG Q Y, et al. MWPToolkit: an open-source framework for deep learning-based math word problem solvers[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2022: 13188-13190.  10.1609/aaai.v36i11.21723 | 
																													
																							| 15 | CHIANG T R, CHEN Y N. Semantically-aligned equation generation for solving and reasoning math word problems[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: ACL, 2019: 2656-2668.  10.18653/v1/n19-1272 | 
																													
																							| 16 | PATEL A, BHATTAMISHRA S, GOYAL N. Are NLP models really able to solve simple math word problems[C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: ACL, 2021:2080-2094.  10.18653/v1/2021.naacl-main.168 | 
																													
																							| 17 | HUANG S F, WANG J W, XU J, et al. Recall and learn: a memory-augmented solver for math word problems[C]// Findings of the Association for Computational Linguistics: EMNLP 2021. Stroudsburg, PA: ACL, 2021: 786-796.  10.18653/v1/2021.findings-emnlp.68 |