Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (6): 1655-1663.DOI: 10.11772/j.issn.1001-9081.2022091335
Special Issue: 综述; CCF第37届中国计算机应用大会 (CCF NCCA 2022)
• The 37 CCF National Conference of Computer Applications (CCF NCCA 2022) • Next Articles
Yongfeng DONG1,2,3, Yacong WANG1,2,3, Yao DONG1,2,3(), Yahan DENG1,2,3
Received:
2022-09-08
Revised:
2022-10-26
Accepted:
2022-10-28
Online:
2022-11-16
Published:
2023-06-10
Contact:
Yao DONG
About author:
DONG Yongfeng, born in 1977, Ph. D., professor. His research interests include artificial intelligence, knowledge graph.Supported by:
董永峰1,2,3, 王雅琮1,2,3, 董瑶1,2,3(), 邓亚晗1,2,3
通讯作者:
董瑶
作者简介:
董永峰(1977—),男,河北定州人,教授,博士,CCF会员,主要研究方向:人工智能、知识图谱基金资助:
CLC Number:
Yongfeng DONG, Yacong WANG, Yao DONG, Yahan DENG. Survey of online learning resource recommendation[J]. Journal of Computer Applications, 2023, 43(6): 1655-1663.
董永峰, 王雅琮, 董瑶, 邓亚晗. 在线学习资源推荐综述[J]. 《计算机应用》唯一官方网站, 2023, 43(6): 1655-1663.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091335
所在区域 | 平台名称 | 课程数 | 平台功能 | 网址 |
---|---|---|---|---|
国外 | Udacity | 数百门课程 | 课程推荐 | http://www.udacity.com/ |
Coursera | 超3 000门课程 | 课程推荐,学位推荐,学习者评价收集 | http://www.coursera.org | |
edX | 超3 000门课程 | 课程推荐,学位推荐 | http://www.edx.org | |
可汗学院 (Khan Academy) | 超2 000个教学片段 | 系统收集学习者习题记录,教师量身定制教学 | https://www.khanacademy.org | |
国内 | 学堂在线 | 超5 000门优质课程 | 课程推荐,习题交互收集分析 | https://www.xuetangx.com |
中国大学MOOC | 数千门课程,包含超1 000门的国家精品课程 | 课程推荐,学习者评价收集 | https://www.icourse163.org/ | |
网易云课堂 | 超10 000门课程 | 课程推荐 | https://study.163.com/ | |
雨课堂 | 不限 | 收集分析学生课上数据、习题数据 | https://www.yuketang.cn/ | |
科大讯飞 | 不限 | 知识点推荐,学习路径推荐 | https://www.iflytek.com/ |
Tab. 1 Domestic and international online education platforms
所在区域 | 平台名称 | 课程数 | 平台功能 | 网址 |
---|---|---|---|---|
国外 | Udacity | 数百门课程 | 课程推荐 | http://www.udacity.com/ |
Coursera | 超3 000门课程 | 课程推荐,学位推荐,学习者评价收集 | http://www.coursera.org | |
edX | 超3 000门课程 | 课程推荐,学位推荐 | http://www.edx.org | |
可汗学院 (Khan Academy) | 超2 000个教学片段 | 系统收集学习者习题记录,教师量身定制教学 | https://www.khanacademy.org | |
国内 | 学堂在线 | 超5 000门优质课程 | 课程推荐,习题交互收集分析 | https://www.xuetangx.com |
中国大学MOOC | 数千门课程,包含超1 000门的国家精品课程 | 课程推荐,学习者评价收集 | https://www.icourse163.org/ | |
网易云课堂 | 超10 000门课程 | 课程推荐 | https://study.163.com/ | |
雨课堂 | 不限 | 收集分析学生课上数据、习题数据 | https://www.yuketang.cn/ | |
科大讯飞 | 不限 | 知识点推荐,学习路径推荐 | https://www.iflytek.com/ |
数据集名称 | 类型 | 数据集内容 | 研究方向 |
---|---|---|---|
edX教育数据集[ | 文本 | 290门在线课程、25万份证书、450万名 参与者的数据 | 学习者行为分析、特征分析等 |
Canvas Network开放数据集[ | 文本 | 325 199条学习者与238门课程的课程 行为记录相关信息 | 学习者类型分析、交互分析、课程推荐等 |
HarvardX Person-Course Academic 数据集[ | 文本 | 哈佛大学2013学年的课程与338 224名 学习者行为数据 | 学习者行为分析、课程推荐等 |
OULAD英国开放大学数据集[ | 文本 | 英国开放大学7门课程的32 593位匿名学生 行为数据 | 学习者行为分析、课程推荐、学生成绩预测等 |
MOOCCube教育数据仓库[ | 概念图、文本 | 学堂在线上706门课程、38 181个视频、 114 563个概念和199 199名真实用户的 交互数据 | 学习资源推荐、课程概念提取、慕课问答预测等 |
MOOPer数据集[ | 知识图谱、文本 | 头歌平台上46 743名用户与600门课程、 1 360个习题、4 550个挑战的交互数据 | 课程推荐、知识追踪、学习行为分析等 |
Tab. 2 Public datasets of learning resources
数据集名称 | 类型 | 数据集内容 | 研究方向 |
---|---|---|---|
edX教育数据集[ | 文本 | 290门在线课程、25万份证书、450万名 参与者的数据 | 学习者行为分析、特征分析等 |
Canvas Network开放数据集[ | 文本 | 325 199条学习者与238门课程的课程 行为记录相关信息 | 学习者类型分析、交互分析、课程推荐等 |
HarvardX Person-Course Academic 数据集[ | 文本 | 哈佛大学2013学年的课程与338 224名 学习者行为数据 | 学习者行为分析、课程推荐等 |
OULAD英国开放大学数据集[ | 文本 | 英国开放大学7门课程的32 593位匿名学生 行为数据 | 学习者行为分析、课程推荐、学生成绩预测等 |
MOOCCube教育数据仓库[ | 概念图、文本 | 学堂在线上706门课程、38 181个视频、 114 563个概念和199 199名真实用户的 交互数据 | 学习资源推荐、课程概念提取、慕课问答预测等 |
MOOPer数据集[ | 知识图谱、文本 | 头歌平台上46 743名用户与600门课程、 1 360个习题、4 550个挑战的交互数据 | 课程推荐、知识追踪、学习行为分析等 |
1 | 马新强,黄羿,蔡宗模. MOOC教育平台技术及运营模式探析[J]. 重庆高教研究, 2014, 2(1): 5-9. 10.3969/j.issn.1673-8012.2014.01.002 |
MA X Q, HUANG Y, CAI Z M. Analysis of MOOC education platform technology and business model[J]. Chongqing Higher Education Research, 2014, 2(1): 5-9. 10.3969/j.issn.1673-8012.2014.01.002 | |
2 | WILLIAMS A E, AGUILAR-ROCA N M, TSAI M, et al. Assessment of learning gains associated with independent exam analysis in introductory biology[J]. Life Sciences Education, 2011, 10(4): 346-356. 10.1187/cbe.11-03-0025 |
3 | TSINAKOS A, KAZANIDIS I. Identification of conflicting questions in the PARES system[J]. International Review of Research in Open and Distance Learning, 2012, 13(3): 297-313. 10.19173/irrodl.v13i3.1176 |
4 | YU J, LI D M, HOU J J, et al. Similarity measure of test questions based on ontology and VSM[J]. The Open Automation and Control Systems Journal, 2014, 6: 262-267. 10.2174/1874444301406010262 |
5 | LI Z Z, HU H Y, XIA Z P, et al. Exercise recommendation method based on machine learning[C]// Proceedings of the IEEE 21st International Conference on Advanced Learning Technologies. Piscataway: IEEE, 2021: 50-52. 10.1109/icalt52272.2021.00023 |
6 | LIU Q, HUANG Z, HUANG Z Y, et al. Finding similar exercises in online education systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1821-1830. 10.1145/3219819.3219960 |
7 | LEIGHTON J P, GIERL M J. Cognitive diagnostic assessment for education: theory and applications [M]. Cambridge: Cambridge University Press, 2007:145-172. 10.1017/cbo9780511611186.001 |
8 | HARVEY R J, HAMMER A L. Item response theory[J]. The Counseling Psychologist, 1999, 27(3): 353-383. 10.1177/0011000099273004 |
9 | OZAKI K. DINA models for multiple-choice items with few parameters: considering incorrect answers[J]. Applied Psychological Measurement, 2015, 39(6): 431-447. 10.1177/0146621615574693 |
10 | RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C]// Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York: ACM, 1994: 175-186. 10.1145/192844.192905 |
11 | 朱天宇,黄振亚,陈恩红,等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017, 40(1):176-191. 10.11897/SP.J.1016.2017.00176 |
ZHU T Y, HUANG Z Y, CHEN E H, et al. Cognitive diagnosis based personalized question recommendation[J]. Chinese Journal of Computers, 2017, 40(1): 176-191. 10.11897/SP.J.1016.2017.00176 | |
12 | 蒋昌猛,冯筠,孙霞,等. 基于知识点层次图的个性化习题推荐算法[J]. 计算机工程与应用, 2018, 54(10):229-235. |
JIANG C M, FENG J, SUN X, et al. Personalized exercises recommendation algorithm based on knowledge hierarchical graph, ReKGH[J]. Computer Engineering and Applications, 2018, 54(10): 229-235. | |
13 | ZHENG W, DU Q, FAN Y J, et al. A personalized programming exercise recommendation algorithm based on knowledge structure tree[J]. Journal of Intelligent and Fuzzy Systems, 2022, 42(3): 2169-2180. 10.3233/jifs-211499 |
14 | DURAND G, BELACEL N, LaPLANTE F. Graph theory based model for learning path recommendation[J]. Information Sciences, 2013, 251: 10-21. 10.1016/j.ins.2013.04.017 |
15 | CHEN C M, PENG C J, SHIUE J Y. Ontology-based concept map for planning a personalized learning path[C]// Proceedings of the 2008 IEEE International Conference on Cybernetics and Intelligent Systems. Piscataway: IEEE, 2008: 1337-1342. 10.1109/iccis.2008.4670870 |
16 | CHEN C M. Intelligent web-based learning system with personalized learning path guidance[J]. Computers and Education, 2008, 51(2): 787-814. 10.1016/j.compedu.2007.08.004 |
17 | DWIVEDI P, KANT V, BHARADWAJ K K. Learning path recommendation based on modified variable length genetic algorithm[J]. Education and Information Technologies, 2018, 23(2): 819-836. 10.1007/s10639-017-9637-7 |
18 | CHEN M Y, TONG M W, LIU C M, et al. Recommendation of learning path using an improved ACO based on novel coordinate system[C]// Proceedings of the 6th IIAI International Congress on Advanced Applied Informatics. Piscataway: IEEE, 2017: 747-753. 10.1109/iiai-aai.2017.90 |
19 | BENDAHMANE M, FALAKI B EL, BENATTOU M. Individualized learning path through a services-oriented approach[M]// ROCHA Á, SERRHINI M, FELGUEIRAS C. Europe and MENA Cooperation Advances in Information and Communication Technologies, AISC 520. Cham: Springer, 2017: 95-102. 10.1007/978-3-319-46568-5_10 |
20 | HSIEH T C, WANG T I. A mining-based approach on discovering courses pattern for constructing suitable learning path[J]. Expert Systems with Applications, 2010, 37(6): 4156-4167. 10.1016/j.eswa.2009.11.007 |
21 | HEITMANN B, HAYES C. Using linked data to build open collaborative recommender systems[EB/OL]. [2022-05-24].. 10.1201/b16859-5 |
22 | YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]// Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 283-292. 10.1145/2556195.2556259 |
23 | CATHERINE R, COHEN W. Personalized recommendations using knowledge graphs: a probabilistic logic programming approach[C]// Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 325-332. 10.1145/2959100.2959131 |
24 | HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540. 10.1145/3219819.3219965 |
25 | SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 297-305. 10.1145/3240323.3240361 |
26 | SHI D Q, WANG T, XING H, et al. A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning[J]. Knowledge-Based Systems, 2020, 195: No.105618. 10.1016/j.knosys.2020.105618 |
27 | ZHOU J X, MA X Y, SHAN P P, et al. Learning path recommendation using lesson sequence and learning object based on course graph[C]// Proceedings of the 13th International Conference on Education Technology and Computers. New York: ACM, 2021: 7-12. 10.1145/3498765.3498767 |
28 | 陈汉福. 高校视频公开课点播平台智能推荐系统的设计与实现[D].广州:华南理工大学, 2016:33-43. |
CHEN H F. Design and implementation of intelligent recommendation system of open class VOD platform[D]. Guangzhou: South China University of Technology, 2016: 33-43. | |
29 | CHOI I Y, OH M G, KIM J K, et al. Collaborative filtering with facial expressions for online video recommendation[J]. International Journal of Information Management, 2016, 36(3): 397-402. 10.1016/j.ijinfomgt.2016.01.005 |
30 | SİNCAN O M, YILDIRIM Z. A new similarity coefficient for a collaborative filtering algorithm[J]. Communications Faculty of Science University of Ankara, 2017, 59(2): 41-54. 10.1501/commua1-2_0000000103 |
31 | DING J, WANG Y B, WANG Q, et al. Football video recommendation system with automatic rating based on user behavior[C]// Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics. Piscataway: IEEE, 2017: 1-5. 10.1109/cisp-bmei.2017.8301933 |
32 | YU D, CHEN R Y, CHEN J. Video recommendation algorithm based on knowledge graph and collaborative filtering[J]. International Journal of Performability Engineering, 2020, 16(12): 1933-1940. |
33 | 熊玲. 基于标签的教学视频推荐系统的设计与实现[D]. 武汉:华中师范大学, 2015:37-43. |
XIONG L. The design and implementation of instructional videos recommendation system based on tag[D]. Wuhan: Central China Normal University, 2015: 37-43. | |
34 | TSAI K H, CHIU T K, LEE M C, et al. A learning objects recommendation model based on the preference and ontological approaches[C]// Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies. Piscataway: IEEE, 2006: 36-40. |
35 | CUI L Z, DONG L Y, FU X H, et al. A video recommendation algorithm based on the combination of video content and social network[J]. Concurrency and Computation: Practice and Experience, 2017, 29(14): No.e3900. 10.1002/cpe.3900 |
36 | LI Y, WANG H J, LIU H L, et al. A study on content-based video recommendation[C]// Proceedings of the 2017 IEEE International Conference on Image Processing. Piscataway: IEEE, 2017: 4581-4585. 10.1109/icip.2017.8297150 |
37 | DELDJOO Y, ELAHI M, CREMONESI P, et al. Content-based video recommendation system based on stylistic visual features[J]. Journal on Data Semantics, 2016, 5(2): 99-113. 10.1007/s13740-016-0060-9 |
38 | LEE J, ABU-EL-HAIJA S. Large-scale content-only video recommendation[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 987-995. 10.1109/iccvw.2017.121 |
39 | BHATT C A, COOPER M, ZHAO J. SeqSense: video recommendation using topic sequence mining[C]// Proceedings of the 2018 International Conference on Multimedia Modeling, LNCS 10705. Cham: Springer, 2018: 252-263. |
40 | TANG C L, LIAO J X, WANG H C, et al. ConceptGuide: supporting online video learning with concept map-based recommendation of learning path[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2757-2768. 10.1145/3442381.3449808 |
41 | RAWAT B, DWIVEDI S K. An architecture for recommendation of courses in e-learning system[J]. International Journal of Information Technology and Computer Science, 2017, 9(4): 39-47. 10.5815/ijitcs.2017.04.06 |
42 | JUNG H, JANG Y, KIM S, et al. KPCR: knowledge graph enhanced personalized course recommendation[C]// Proceedings of the 2021 Australasian Joint Conference on Artificial Intelligence, LNCS 13151. Cham: Springer, 2022: 739-750. |
43 | 李弘运. 基于微博的在线学习资源推荐平台核心功能设计与实现[D]. 北京:北京邮电大学, 2015:33-40. |
LI H Y. Design and implementation of core functions of online learning recommendation platform based on Weibo[D]. Beijing: Beijing University of Posts and Telecommunications, 2015: 33-40. | |
44 | GULZAR Z, LEEMA A A, DEEPAK G. PCRS: personalized course recommender system based on hybrid approach[J]. Procedia Computer Science, 2018, 125: 518-524. 10.1016/j.procs.2017.12.067 |
45 | 贺超波,付志文,刘海,等. 基于兴趣社区的学习资源推荐模式设计[J]. 中国教育信息化, 2017(13):51-54. 10.3969/j.issn.1673-8454.2017.07.014 |
HE C B, FU Z W, LIU H, et al. Design of learning resource recommendation model based on interest community[J]. The Chinese Journal of ICT in Education, 2017(13): 51-54. 10.3969/j.issn.1673-8454.2017.07.014 | |
46 | YIN S J, YANG K L, WANG H Z. A MOOC courses recommendation system based on learning behaviours[C]// Proceedings of the 2020 ACM Turing Celebration Conference — China. New York: ACM, 2020: 133-137. 10.1145/3393527.3393550 |
47 | 陈海建,戴永辉,韩冬梅,等. 开放式教学下的学习者画像及个性化教学探讨[J]. 开放教育研究, 2017, 23(3): 105-112. |
CHEN H J, DAI Y H, HAN D M, et al. Learner’s portrait and individualized teaching in open education[J]. Open Education Research, 2017, 23(3): 105-112. | |
48 | 王晓芳,贾宗维. 基于K-means的MOOC学习行为分析及用户画像研究[J]. 中国教育信息化, 2019(1): 43-46. 10.3969/j.issn.1673-8454.2019.01.011 |
WANG X F, JIA Z W. MOOC learning behavior analysis and user portrait research based on K-means[J]. The Chinese Journal of ICT in Education, 2019(1): 43-46. 10.3969/j.issn.1673-8454.2019.01.011 | |
49 | 王莉莉,郭威彤,杨鸿武. 利用学习者画像实现个性化课程推荐[J]. 电化教育研究, 2021, 42(12):55-62. |
WANG L L, GUO W T, YANG H W. Study on realizing personalized course recommendation by using learner portraits[J]. e-Education Research, 2021, 42(12): 55-62. | |
50 | 葛迪,吴彦文,刘三.低成本自进化的学习者画像模型研究[J/OL]. 计算机工程与应用 (2022-06-08) [2022-10-05].. 10.3778/j.issn.1002-8331.2202-0240 |
GE D, WU Y W, LIU S Y. A low cost self evolving learner portrait model[J/OL]. Computer Engineering and Applications (2022-06-08) [2022-10-05].. 10.3778/j.issn.1002-8331.2202-0240 | |
51 | 桂忠艳,张艳明,李巍巍. 基于行为序列分析的学习资源推荐算法研究[J]. 计算机应用研究, 2020, 37(7):1979-1982. |
GUI Z Y, ZHANG Y M, LI W W. Research on learning resource recommendation algorithm based on behavior sequence analysis[J]. Application Research of Computers, 2020, 37(7): 1979-1982. | |
52 | 卢春华,杨辉,李云鹏. 一种基于本体和循环神经网络的在线学习资源推荐技术[J]. 情报理论与实践, 2019, 42(12):150-155, 138. |
LU C H, YANG H, LI Y P. Recommending learning resources via ontology and recurrent neural networks[J]. Information Studies: Theory and Application, 2019, 42(12): 150-155, 138. | |
53 | 王萍. 基于edX开放数据的学习者学习分析[J]. 现代教育技术, 2015, 25(4):86-93. 10.3969/j.issn.1009-8097.2015.04.013 |
WANG P. Learning analysis of learners based on edX open data[J]. Modern Educational Technology, 2015, 25(4): 86-93. 10.3969/j.issn.1009-8097.2015.04.013 | |
54 | 胡红梅,宗阳. 基于Canvas Network开放数据集的MOOC学习分析[J]. 开放学习研究, 2017(1):59-66. 10.3969/j.issn.1008-7648.2017.01.006 |
HU H M, ZONG Y. MOOC learning analysis based on Canvas Network open data set[J]. Journal of Open Learning, 2017(1): 59-66. 10.3969/j.issn.1008-7648.2017.01.006 | |
55 | 王萍.基于edX开放数据的学习者学习分析[J]. 现代教育技术,2015,25(4):86-93. 10.3969/j.issn.1009-8097.2015.04.013 |
WANG P. Learning analysis of learners based on edX open data[J]. Modern Educational Technology, 2015, 25(4):86-93. 10.3969/j.issn.1009-8097.2015.04.013 | |
56 | 石琬若,牛晓杰,郑勤华. 以活动为中心的在线课程学习结果影响因素实证研究——以英国开放大学学习分析数据集(OULAD)为例[J]. 开放学习研究, 2018, 23(6):10-18. |
SHI W R, NIU X J, ZHENG Q H. Empirical study on the influencing factors of activity-centered online courses learning outcomes: take OULAD as an example[J]. Journal of Open Learning, 2018, 23(6): 10-18. | |
57 | YU J F, LUO G, XIAO T, et al. MOOCCube: a large-scale data repository for NLP applications in MOOCs [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2020: 3135-3142. 10.18653/v1/2020.acl-main.285 |
58 | LIU K J, ZHAO X, TANG J Y, et al. MOOPer: a large-scale dataset of practice-oriented online learning [C]// Proceedings of the 2021 China Conference on Knowledge Graph and Semantic Computing, CCIS 1466. Singapore: Springer, 2021: 281-287. |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Yuan LIU, Yongquan DONG, Rui JIA, Haolin YANG. Hierarchical and phased attention network model for personalized course recommendation [J]. Journal of Computer Applications, 2023, 43(8): 2358-2363. |
[3] | Yu LING, Zhilong SHAN. Knowledge concept recommendation system based on interest enhancement [J]. Journal of Computer Applications, 2023, 43(12): 3697-3702. |
[4] | Qinghua LIU, Shizhong LIAO. Online kernel regression based on random sketching method [J]. Journal of Computer Applications, 2022, 42(3): 676-682. |
[5] | Jialiang HAN, Yudong HAN, Xuanzhe LIU, Yaoshuai ZHAO, Di FENG. Personalized recommendation service system based on cloud-client-convergence [J]. Journal of Computer Applications, 2022, 42(11): 3506-3512. |
[6] | Haiwei FAN, Ruichi ZHANG, Yisheng AN, Jiajie QIN. Recommendation algorithm for online learning resources based on double-end neighbor fusion knowledge graph [J]. Journal of Computer Applications, 2022, 42(10): 3054-3059. |
[7] | LIU Huan, LI Xiaoge, HU Likun, HU Feixiong, WANG Penghua. Knowledge graph driven recommendation model of graph neural network [J]. Journal of Computer Applications, 2021, 41(7): 1865-1870. |
[8] | GUO Yicun, CHEN Huahui. Survey on online hashing algorithm [J]. Journal of Computer Applications, 2021, 41(4): 1106-1112. |
[9] | SUN Heli, XU Tong, HE Liang, JIA Xiaolin. Personalized social event recommendation method integrating user historical behaviors and social relationships [J]. Journal of Computer Applications, 2021, 41(2): 324-329. |
[10] | Kai DENG, Jiajin HUNAG, Jin QIN. Item-based unified recommendation model [J]. Journal of Computer Applications, 2020, 40(2): 530-534. |
[11] | ZHANG Junjie, SUN Guangmin, ZHENG Kun. Review of gaze tracking and its application in intelligent education [J]. Journal of Computer Applications, 2020, 40(11): 3346-3356. |
[12] | WU Wanting, ZHU Yan, HUANG Dingjiang. Semi-exponential gradient strategy and empirical analysis for online portfolio selection [J]. Journal of Computer Applications, 2019, 39(8): 2462-2467. |
[13] | YU Shunchang, HUANG Dingjiang. Online portfolio selection based on autoregressive moving average reversion [J]. Journal of Computer Applications, 2018, 38(5): 1505-1511. |
[14] | SUN Limei, LI Yue, Ejike Ifeanyi Michael, CAO Keyan. Simplified Slope One algorithm for online rating prediction [J]. Journal of Computer Applications, 2018, 38(2): 497-502. |
[15] | FENG Yong, HAN Xiaolong, FU Chenping, WANG Rongbing, XU Hongyan. Commodity recommendation method integrating user trust and brand recognition [J]. Journal of Computer Applications, 2018, 38(10): 2886-2891. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||