| 1 | SILVEIRA DIAS A DA, WIVES L K. Recommender system for learning objects based in the fusion of social signals, interests, and preferences of learner users in ubiquitous e-learning systems[J]. Personal and Ubiquitous Computing, 2019, 23(2): 249-268.  10.1007/s00779-018-01197-7 | 
																													
																							| 2 | KLAŠNJA-MILIĆEVIĆ A, VESIN B, IVANOVIĆ M, et al. E-learning personalization based on hybrid recommendation strategy and learning style identification[J]. Computers and Education, 2011, 56(3):885-899.  10.1016/j.compedu.2010.11.001 | 
																													
																							| 3 | SHI D Q, WANG T, XING H, et al. A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning[J]. Knowledge-Based Systems, 2020, 195: No.105618.  10.1016/j.knosys.2020.105618 | 
																													
																							| 4 | RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010:811-820.  10.1145/1772690.1772773 | 
																													
																							| 5 | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. (2016-03-29) [2022-07-26].. | 
																													
																							| 6 | TREISMAN A M, GELADE G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 12(1):97-136.  10.1016/0010-0285(80)90005-5 | 
																													
																							| 7 | BELLO I, ZOPH B, LE Q, et al. Attention augmented convolutional networks[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019:3285-3294.  10.1109/iccv.2019.00338 | 
																													
																							| 8 | VASWANI A, NSHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017:6000-6010. | 
																													
																							| 9 | WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958.  10.1145/3292500.3330989 | 
																													
																							| 10 | ZHANG L M, LIU P, GULLA J A. Dynamic attention-integrated neural network for session-based news recommendation[J]. Machine Learning, 2019, 108(10):1851-1875.  10.1007/s10994-018-05777-9 | 
																													
																							| 11 | XIONG C M, ZHONG V, SOCHER R. Dynamic coattention networks for question answering[EB/OL]. (2018-03-06) [2022-07-26].. | 
																													
																							| 12 | CHEN X S, LIU D, ZHA Z J, et al. Temporal hierarchical attention at category- and item-level for micro-video click-through prediction[C]// Proceedings of the 2018 ACM Multimedia Conference. New York: ACM, 2018: 1146-1153.  10.1145/3240508.3240617 | 
																													
																							| 13 | CHEN J Y, ZHANG H W, HE X N, et al. Attentive collaborative filtering: multimedia recommendation with item- and component-level attention[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017:335-344.  10.1145/3077136.3080797 | 
																													
																							| 14 | DAI Z H, LIU H X, LE Q V, et al. CoAtNet: marrying convolution and attention for all data sizes[C/OL]// Proceedings of the 35th Conference on Neural Information Processing Systems [2022-07-26].. | 
																													
																							| 15 | PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]// BRUSILOVSKY P, KOBSA A, NEJDL W. The Adaptive Web: Methods and Strategies of Web Personalization, LNCS 4321. Berlin: Springer, 2007: 325-341. | 
																													
																							| 16 | CHATTI M A, DAKOVA S, THÜS H, et al. Tag-based collaborative filtering recommendation in personal learning environments[J]. IEEE Translation on Learning Technologies, 2013, 6(4): 337-349.  10.1109/tlt.2013.23 | 
																													
																							| 17 | CHANG P C, LIN C H, CHEN M H. A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems[J]. Algorithms, 2016, 9(3): No.47.  10.3390/a9030047 | 
																													
																							| 18 | ZHANG M, LIU S X, WANG Y F. STR-SA: session-based thread recommendation for online course forum with self-attention[C]// Proceedings of the 2020 IEEE Global Engineering Education Conference. Piscataway: IEEE, 2020:374-381.  10.1109/educon45650.2020.9125245 | 
																													
																							| 19 | JING X, TANG J. Guess you like: course recommendation in MOOCs[C]// Proceedings of the 2017 IEEE/WIC/ACM International Conferences on Web Intelligence. New York: ACM, 2017: 783-789.  10.1145/3106426.3106478 | 
																													
																							| 20 | 胡园园,姜文君,任德盛,等. 一种结合用户适合度和课程搭配度的在线课程推荐方法[J]. 计算机研究与发展, 2022, 59(11):2520-2533.  10.7544/issn1000-1239.20210348 | 
																													
																							|  | HU Y Y, JIANG W J, REN D S, et al. Integrating user suitability and course matching degree for online course recommendation method[J]. Journal of Computer Research and Development, 2022, 59(11):2520-2533.  10.7544/issn1000-1239.20210348 | 
																													
																							| 21 | YING H C, ZHUANG F Z, ZHANG F Z, et al. Sequential recommender system based on hierarchical attention networks[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. California: ijcai.org, 2018: 3926-3932.  10.24963/ijcai.2018/546 | 
																													
																							| 22 | ZHANG S, TAY Y, YAO L N, et al. Next item recommendation with self-attentive metric learning[EB/OL]. (2018-08-25) [2022-05-26].. | 
																													
																							| 23 | LIU H L, XU Z M, ZHANG Q Q, et al. Integrating users’ long- and short-term preferences for session-based recommendation[C]// Proceedings of the IEEE 25th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2022: 611-616.  10.1109/cscwd54268.2022.9776254 | 
																													
																							| 24 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016:770-778.  10.1109/cvpr.2016.90 | 
																													
																							| 25 | CHENG H T, KOC L, HARMSEN J, et al. Wide & Deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10.  10.1145/2988450.2988454 | 
																													
																							| 26 | ZHANG M Q, WU S, GAO M, et al. Personalized graph neural networks with attention mechanism for session-aware recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(8):3946-3957.  10.1109/tkde.2020.3031329 | 
																													
																							| 27 | HE X N, HE Z K, SONG J K, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(12): 2354-2366.  10.1109/tkde.2018.2831682 | 
																													
																							| 28 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feed-back[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009:452-461. | 
																													
																							| 29 | YU J F, LUO G, XIAO T, et al. MOOCCube: a large-scale data repository for NLP applications in MOOCs[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:ACL, 2020: 3135-3142.  10.18653/v1/2020.acl-main.285 |