Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2766-2774.DOI: 10.11772/j.issn.1001-9081.2022091344
• Data science and technology • Previous Articles Next Articles
Zheng XIE1,2, Zihao WANG1,2, Dan TANG1,2(), Hang ZHANG3, Hongliang CAI1,2
Received:
2022-09-15
Revised:
2022-12-16
Accepted:
2022-12-21
Online:
2023-02-24
Published:
2023-09-10
Contact:
Dan TANG
About author:
XIE Zheng, born in 1997, M. S. candidate. His research interests include coding theory, distributed storage.Supported by:
解峥1,2, 王子豪1,2, 唐聃1,2(), 张航3, 蔡红亮1,2
通讯作者:
唐聃
作者简介:
解峥(1997—),男,河南濮阳人,硕士研究生,主要研究方向:编码理论、分布式存储基金资助:
CLC Number:
Zheng XIE, Zihao WANG, Dan TANG, Hang ZHANG, Hongliang CAI. Double fault tolerant array code with low compilation complexity[J]. Journal of Computer Applications, 2023, 43(9): 2766-2774.
解峥, 王子豪, 唐聃, 张航, 蔡红亮. 低编译复杂度的双容错阵列码[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2766-2774.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091344
纠删码 | 存储利用率 |
---|---|
EVENODD | |
RDP | |
X-code | |
N-code | |
EaR | |
J-code |
Tab. 1 Formulas for calculating storage utilization of different erasure codes
纠删码 | 存储利用率 |
---|---|
EVENODD | |
RDP | |
X-code | |
N-code | |
EaR | |
J-code |
纠删码 | 编码复杂度 | 译码复杂度 |
---|---|---|
EVENODD | ||
RDP | ||
X-code | ||
N-code | ||
EaR | ||
J-code |
Tab. 2 Calculation formulas of encoding and decoding complexity of different erasure codes
纠删码 | 编码复杂度 | 译码复杂度 |
---|---|---|
EVENODD | ||
RDP | ||
X-code | ||
N-code | ||
EaR | ||
J-code |
纠删码 | 单磁盘修复硬盘读取次数 |
---|---|
EVENODD | |
RDP | |
X-code | |
N-code | |
EaR | |
J-code |
Tab. 3 Calculation formulas of read times for single disk failure repair of different erasure codes
纠删码 | 单磁盘修复硬盘读取次数 |
---|---|
EVENODD | |
RDP | |
X-code | |
N-code | |
EaR | |
J-code |
p | 纠删码 | 编码用时/ms | 单磁盘故障修复用时/ms | 双磁盘故障修复用时/ms |
---|---|---|---|---|
3 | EVENODD | 2 091 | 103 | 2 141 |
RDP | 1 869 | 100 | 1 812 | |
X-code | 1 010 | 136 | 2 372 | |
N-code | 1 952 | 102 | 1 800 | |
EaR | 1 932 | 104 | 1 733 | |
J-code | 1 491 | 93 | 1 518 | |
5 | EVENODD | 1 805 | 338 | 1 114 |
RDP | 1 692 | 327 | 1 074 | |
X-code | 1 507 | 349 | 1 245 | |
N-code | 1 663 | 333 | 1 072 | |
EaR | 1 859 | 307 | 1 013 | |
J-code | 1 653 | 279 | 1 009 | |
7 | EVENODD | 1 581 | 472 | 1 416 |
RDP | 1 475 | 463 | 1 363 | |
X-code | 1 432 | 490 | 1 386 | |
N-code | 1 506 | 470 | 1 353 | |
EaR | 1 580 | 448 | 1 330 | |
J-code | 1 471 | 438 | 1 170 |
Tab. 4 Comparison of time consumption under different encoding parameter p
p | 纠删码 | 编码用时/ms | 单磁盘故障修复用时/ms | 双磁盘故障修复用时/ms |
---|---|---|---|---|
3 | EVENODD | 2 091 | 103 | 2 141 |
RDP | 1 869 | 100 | 1 812 | |
X-code | 1 010 | 136 | 2 372 | |
N-code | 1 952 | 102 | 1 800 | |
EaR | 1 932 | 104 | 1 733 | |
J-code | 1 491 | 93 | 1 518 | |
5 | EVENODD | 1 805 | 338 | 1 114 |
RDP | 1 692 | 327 | 1 074 | |
X-code | 1 507 | 349 | 1 245 | |
N-code | 1 663 | 333 | 1 072 | |
EaR | 1 859 | 307 | 1 013 | |
J-code | 1 653 | 279 | 1 009 | |
7 | EVENODD | 1 581 | 472 | 1 416 |
RDP | 1 475 | 463 | 1 363 | |
X-code | 1 432 | 490 | 1 386 | |
N-code | 1 506 | 470 | 1 353 | |
EaR | 1 580 | 448 | 1 330 | |
J-code | 1 471 | 438 | 1 170 |
1 | PATTERSON D A, GIBSON G, KATZ R H. A case for redundant arrays of inexpensive disks (RAID)[C]// Proceedings of the 1988 ACM SIGMOD international conference on Management of data. New York: ACM, 1988: 109-116. 10.1145/50202.50214 |
2 | PLANK J S, LUO J Q, SCHUMAN C D, et al. a performance evaluation and examination of open-source erasure coding libraries for storage[C]// Proceedings of the 7th USENIX Conference on File and Storage Technologies. Berkeley, CA: USENIX Association, 2009, 9: 253-265. |
3 | CORBETT P, ENGLISH B, GOEL A, et al. Row-diagonal parity for double disk failure correction[C]// Proceedings of the 3rd USENIX Conference on File and Storage Technologies. Berkeley: USENIX Association, 2004: 1-14. |
4 | SCHROEDER B, GIBSON G A. Understanding disk failure rates: what does an MTTF of 1,000,000 hours mean to you? [J]. ACM Transactions on Storage, 2007, 3(3): No.8. 10.1145/1288783.1288785 |
5 | PINHEIRO E, WEBER W D, BARROSO L A. Failure trends in a large disk drive population[C]// Proceedings of the 5th USENIX Conference on File and Storage Technologies. Berkeley: USENIX Association, 2007: 17-28. |
6 | BLAUM M, BRADY J, BRUCK J, et al. EVENODD: an efficient scheme for tolerating double disk failures in RAID architectures[J]. IEEE Transactions on Computers, 1995, 44(2): 192-202. 10.1109/12.364531 |
7 | XU L H, BRUCK J. X-code: MDS array codes with optimal encoding[J]. IEEE Transactions on Information Theory, 1999, 45(1): 272-276. 10.1109/18.746809 |
8 | 罗象宏,舒继武. 存储系统中的纠删码研究综述[J]. 计算机研究与发展, 2012, 49(1):1-11. |
LUO X H, SHU J W. Summary of research for erasure code in storage system[J]. Journal of Computer Research and Development, 2012, 49(1):1-11. | |
9 | XIE P, YUAN Z, HUANG J Z, et al. N-Code: an optimal RAID-6 MDS array code for load balancing and high I/O performance[C]// Proceedings of the 48th International Conference on Parallel Processing. New York: ACM, 2019: No.34. 10.1145/3337821.3337829 |
10 | LIANG N J, ZHANG X J, WU X R, et al. An endurance-aware RAID-6 code with low computational complexity and write overhead[C]// Proceedings of the 19th IEEE International Symposium on Parallel and Distributed Processing with Applications/ 11th International Conference on Big Data and Cloud Computing/ 14th International Conference on Social Computing and Networking/ 11th International Conference on Sustainable Computing and Communications. Piscataway: IEEE, 2021: 939-946. 10.1109/ispa-bdcloud-socialcom-sustaincom52081.2021.00132 |
11 | LIANG N J, ZHANG X J, CHEN H, et al. Thou code: a triple-erasure-correcting horizontal code with optimal update complexity[J]. The Journal of Supercomputing, 2022, 78(7): 10088-10117. 10.1007/s11227-021-04271-9 |
12 | HUANG S Y, HOU H X, YU X S. A lower bound on disk reads for single information disk failure recovery and one recovery scheme for EVENODD(p, 3)[C]// Proceedings of the 9th International Workshop on Signal Design and its Applications in Communications. Piscataway: IEEE, 2019: 1-5. 10.1109/iwsda46143.2019.8966126 |
13 | DENG M Z, ZHU L Y, XIAO N, et al. X-code+: a compromised coding scheme with smaller rebuild window and load-balance[C]// Proceedings of the 4th International Conference on Computer Science and Network Technology. Piscataway: IEEE, 2015: 254-261. 10.1109/iccsnt.2015.7490747 |
14 | FU Y X, SHU J W, SHEN Z R, et al. Reconsidering single disk failure recovery for erasure coded storage systems: optimizing load balancing in stack-level[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(5): 1457-1469. 10.1109/tpds.2015.2442979 |
15 | LI Y K, WANG N, TIAN C J, et al. A hierarchical RAID architecture towards fast recovery and high reliability[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 29(4): 734-747. 10.1109/tpds.2017.2775231 |
16 | CHEN X, CAI S H, MA X. HVD code: a class of MDS array codes for tolerating triple disk failures[J]. IET Communications, 2019, 13(6): 748-757. 10.1049/iet-com.2018.6126 |
17 | SHEN Z R, SHU J W, FU Y X. HY code: an all-around MDS code for RAID-6 storage systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2016, 27(6): 1674-1686. 10.1109/tpds.2015.2464800 |
18 | HUANG Z J, JIANG H, SHEN Z R, et al. Optimal encoding and decoding algorithms for the RAID-6 Liberation codes[C]// Proceedings of the 2020 IEEE International Parallel and Distributed Processing Symposium. Piscataway: IEEE, 2020: 708-717. 10.1109/ipdps47924.2020.00078 |
19 | PLANK J S. The RAID-6 Liberation Codes[C]// Proceedings of the 6th USENIX Conference on File and Storage Technologies. Berkeley: USENIX Association, 2008: 97-110. |
20 | REED I S, SOLOMON G. Polynomial codes over certain finite fields[J]. Journal of the Society for Industrial and Applied Mathematics, 1960, 8(2): 300-304. 10.1137/0108018 |
21 | PLANK J S. A tutorial on Reed-Solomon coding for fault‐tolerance in RAID‐like systems[J]. Software: Practice and Experience, 1997, 27(9): 995-1012. 10.1002/(sici)1097-024x(199709)27:9<995::aid-spe111>3.0.co;2-6 |
22 | CASSUTO Y, BRUCK J. Cyclic lowest density MDS array codes[J]. IEEE Transactions on Information Theory, 2009, 55(4): 1721-1729. 10.1109/tit.2009.2013024 |
23 | JIN C, JIANG H, FENG D, et al. P-Code: a new RAID-6 code with optimal properties[C]// Proceedings of the 23rd International Conference on Supercomputing. New York: ACM, 2009: 360-369. 10.1145/1542275.1542326 |
24 | JIN C, FENG D, JIANG H, et al. A comprehensive study on RAID-6 codes: horizontal vs. vertical[C]// Proceedings of the IEEE 6th International Conference on Networking, Architecture, and Storage. Piscataway: IEEE, 2011: 102-111. 10.1109/nas.2011.31 |
25 | XIANG L P, XU Y L, LUI J C S, et al. Optimal recovery of single disk failure in RDP code storage systems[J]. ACM SIGMETRICS Performance Evaluation Review, 2010, 38(1): 119-130. 10.1145/1811099.1811054 |
[1] | Kedi NIU, Min LI, Zhongyuan YAO, Xueming SI. Review of blockchain consensus algorithms for internet of things [J]. Journal of Computer Applications, 2024, 44(12): 3678-3687. |
[2] | Chundong WANG, Xin JIANG. Improved practical Byzantine fault tolerance algorithm based on verifiable delay function [J]. Journal of Computer Applications, 2023, 43(11): 3484-3489. |
[3] | WANG Jindong, LI Qiang. Improved practical Byzantine fault tolerance consensus algorithm based on Raft algorithm [J]. Journal of Computer Applications, 2023, 43(1): 122-129. |
[4] | Xiuli REN, Lei ZHANG. Improved multi-primary-node consensus mechanism based on practical Byzantine fault tolerance [J]. Journal of Computer Applications, 2022, 42(5): 1500-1507. |
[5] | YANG Longhai, WANG Xueyuan, JIANG Hesong. Blockchain digital signature scheme with improved SM2 signature method [J]. Journal of Computer Applications, 2021, 41(7): 1983-1988. |
[6] | LI Jing, LUO Jinfei, LI Bingchao. Reliability analysis models for replication-based storage systems with proactive fault tolerance [J]. Journal of Computer Applications, 2021, 41(4): 1113-1121. |
[7] | LIU Yu, ZHU Chaoyang, LI Jinze, LAO Yuanji, QIN Tuanfa. d-PBFT:detection consensus algorithm for alliance blockchain [J]. Journal of Computer Applications, 2021, 41(3): 756-762. |
[8] | LI Jing, JING Xu, YANG Huijun. Blockchain electronic counting scheme based on practical Byzantine fault tolerance algorithm [J]. Journal of Computer Applications, 2020, 40(4): 954-960. |
[9] | WANG Keke, CHEN Zhide, XU Jian. Efficient traceability system for quality and safety of agricultural products based on consortium blockchain [J]. Journal of Computer Applications, 2019, 39(8): 2438-2443. |
[10] | GAN Jun, LI Qiang, CHEN Zihao, ZHANG Chao. Improvement of blockchain practical Byzantine fault tolerance consensus algorithm [J]. Journal of Computer Applications, 2019, 39(7): 2148-2155. |
[11] | PAN Jianguo, LI Hao. Intrusion detection approach for IoT based on practical Byzantine fault tolerance [J]. Journal of Computer Applications, 2019, 39(6): 1742-1746. |
[12] | WANG Haiyong, GUO Kaixuan, PAN Qiqing. Byzantine fault tolerance consensus algorithm based on voting mechanism [J]. Journal of Computer Applications, 2019, 39(6): 1766-1771. |
[13] | JIA Mengyao, WANG Xingwei, ZHANG Shuang, YI Bo, HUANG Min. Software defined network based fault tolerant routing mechanism for satellite networks [J]. Journal of Computer Applications, 2019, 39(6): 1772-1779. |
[14] | YANG Yuxing, LI Xiaohui. Three-length-path structure connectivity and substructure connectivity of hypercube networks [J]. Journal of Computer Applications, 2019, 39(2): 509-512. |
[15] | LI Jing, LIU Dongshi. Reliability evaluation model for cloud storage systems with proactive fault tolerance [J]. Journal of Computer Applications, 2018, 38(9): 2631-2636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||