| 1 | PANZARASA P, OPSAHL T, CARLEY K M. Patterns and dynamics of users' behavior and interaction: network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009, 60(5): 911-932.  10.1002/asi.21015 | 
																													
																							| 2 | PARANJAPE A, BENSON A R, LESKOVEC J. Motifs in temporal networks[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 601-610.  10.1145/3018661.3018731 | 
																													
																							| 3 | LI W, ZHONG K, WANG J, et al. A dynamic algorithm based on cohesive entropy for influence maximization in social networks[J]. Expert Systems with Applications, 2021, 169: No.114207.  10.1016/j.eswa.2020.114207 | 
																													
																							| 4 | YIN Y, ZHAO Y, LI H, et al. Multi-objective evolutionary clustering for large-scale dynamic community detection[J]. Information Sciences, 2021, 549: 269-287.  10.1016/j.ins.2020.11.025 | 
																													
																							| 5 | WANG Z, WANG C, LI X, et al. Evolutionary Markov dynamics for network community detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3): 1206-1220.  10.1109/tkde.2020.2997043 | 
																													
																							| 6 | BESHARATNIA F, TALEBPOUR A, ALIAKBARY S. An improved grey wolves optimization algorithm for dynamic community detection and data clustering[J]. Applied Artificial Intelligence, 2022, 36(1): No.2012000.  10.1080/08839514.2021.2012000 | 
																													
																							| 7 | LI Y, HE K, BINDEL D, et al. Overlapping community detection via local spectral clustering[EB/OL]. (2015-09-26) [2022-09-10]..  10.1145/3106370 | 
																													
																							| 8 | WHARRIE S, AZIZI L, ALTMANN E G. Micro-, meso-, macroscales: the effect of triangles on communities in networks[J]. Physical Review E, 2019, 100(2): No.022315.  10.1103/physreve.100.022315 | 
																													
																							| 9 | MUCHA P J, RICHARDSON T, MACON K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.  10.1126/science.1184819 | 
																													
																							| 10 | PALLA G, BARABÁSI A L, VICSEK T. Quantifying social group evolution[J]. Nature, 2007, 446(7136): 664-667.  10.1038/nature05670 | 
																													
																							| 11 | KANAVOS A, VOUTOS Y, GRIVOKOSTOPOULOU F, et al. Evaluating methods for efficient community detection in social networks[J]. Information, 2022, 13(5): No.209.  10.3390/info13050209 | 
																													
																							| 12 | LI N, PEN M, JIANG W, et al. A community detection algorithm based on multi-similarity method[J]. Cluster Computing, 2019, 22(S2): 2865-2874.  10.1007/s10586-017-1610-0 | 
																													
																							| 13 | QIN X, DAI W, JIAO P, et al. A multi-similarity spectral clustering method for community detection in dynamic networks[J]. Scientific Reports, 2016, 6: No.31454.  10.1038/srep31454 | 
																													
																							| 14 | CHEN J, WANG H, WANG L, et al. A dynamic evolutionary clustering perspective: community detection in signed networks by reconstructing neighbor sets[J]. Physica A: Statistical Mechanics and its Applications, 2016, 447: 482-492.  10.1016/j.physa.2015.12.006 | 
																													
																							| 15 | OLSZEWSKI D. A clustering-based adaptive neighborhood retrieval visualizer[J]. Neural Networks, 2021, 140: 247-260.  10.1016/j.neunet.2021.03.018 | 
																													
																							| 16 | GUIDI B, MICHIENZI A, ROSSETTI G. Towards the dynamic community discovery in decentralized online social networks[J] Grid Computing, 2019, 17(1): 23-44.  10.1007/s10723-018-9448-0 | 
																													
																							| 17 | MOHAMMADMOSAFERI K K, NADERI H. Evolution of communities in dynamic social networks: an efficient map-based approach[J]. Expert Systems with Applications, 2020, 147: No.113221.  10.1016/j.eswa.2020.113221 | 
																													
																							| 18 | IZAKIAN H, ABRAHAM A. Fuzzy C-means and fuzzy swarm for fuzzy clustering problem[J]. Expert Systems with Applications, 2011, 38(3):1835-1838.  10.1016/j.eswa.2010.07.112 | 
																													
																							| 19 | BOUDEBZA S. An approach for detecting dynamic communities in social networks[D]. Jijel: Université Mohammed Seddik BenYahia, 2022: 1-165. | 
																													
																							| 20 | TAKAFFOLI M, SANGI F, FAGNAN J, et al. Community evolution mining in dynamic social networks[J]. Procedia — Social and Behavioral Sciences, 2011, 22:49-58.  10.1016/j.sbspro.2011.07.055 | 
																													
																							| 21 | ŠKRLJ B, KRALJ J, LAVRAČ N. Embedding-based Silhouette community detection[J]. Machine Learning, 2020, 109(11): 2161-2193.  10.1007/s10994-020-05882-8 | 
																													
																							| 22 | 蒲实,赵卫东. 一种面向动态科研网络的社区检测算法[J]. 计算机科学, 2022, 49(1):89-94.  10.11896/jsjkx.210100023 | 
																													
																							|  | PU S, ZHAO W D. Community detection algorithm for dynamic research network[J]. Computer Science, 2022, 49(1):89-94.  10.11896/jsjkx.210100023 | 
																													
																							| 23 | 许平华,胡文斌,邱振宇,等. 节点不对称转移概率的网络社区发现算法[J]. 软件学报, 2019, 30(12):3829-3845. | 
																													
																							|  | XU P H, HU W B, QIU Z Y, et al. Community detection algorithm based on asymmetric transition probability of nodes[J]. Journal of Software, 2019, 30(12): 3829-3845. | 
																													
																							| 24 | 周锐,王桂娟,邓皓天,等. 复杂网络聚类特征层次布局算法[J]. 计算机应用研究, 2022, 39(2):479-484. | 
																													
																							|  | ZHOU R, WANG G J, DENG H T, et al. Complex network clustering feature multi-level layout algorithm[J]. Application Research of Computers, 2022, 39(2): 479-484. |