[1] 何劲, 祁春节. 中外柑橘产业发展模式比较与借鉴[J]. 浙江柑橘,2009,26(4):2-7.(HE J,QI C J. Comparison and reference of Chinese and foreign citrus industry development models[J]. Zhejiang Citrus,2009,26(4):2-7.) [2] YESUF M. Pseudocercospora leaf and fruit spot disease of citrus:achievements and challenges in the citrus industry:a review[J]. Agricultural Sciences,2013,4(7):324-328. [3] WETTERICH C B, FELIPE DE OLIVEIRA NEVES R, BELASQUE J,et al. Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique[J]. Applied Optics,2016,55(2):400-407. [4] GAVHALE K R,GAWANDE U. An overview of the research on plant leaves disease detection using image processing techniques[J]. IOSR Journal of Computer Engineering,2014,16(1):10-16. [5] TOURE M L. 基于马尔可夫随机场和模糊聚类的图像分割算法研究[D]. 长沙:中南大学,2012:Ⅳ.(TOURE M L. Research on image segmentation algorithms based on Markov random field and fuzzy clustering[J]. Changsha:Central South University, 2012:Ⅳ.) [6] LI X,LEE W S,LI M,et al. Spectral difference analysis and airborne imaging classification for citrus greening infected trees[J]. Computers and Electronics in Agriculture,2012,83:32-46. [7] DENG X,LAN Y,HONG T,et al. Citrus greening detection using visible spectrum imaging and C-SVC[J]. Computers and Electronics in Agriculture,2016,130:177-183. [8] WENG H,LV J,CEN H,et al. Hyperspectral reflectance imaging combined with carbohydrate metabolism analysis for diagnosis of citrus Huanglongbing in different seasons and cultivars[J]. Sensors and Actuators B:Chemical,2018,275:50-60. [9] KIM D,BURKS T F,RITENOUR M A,et al. Citrus black spot detection using hyperspectral image analysis[J]. International Journal of Agricultural and Biological Engineering,2014,7(6):20-27. [10] ALI H, LALI M I, NAWAZ M Z, et al. Symptom based automated detection of citrus diseases using color histogram and textural descriptors[J]. Computers and Electronics in Agriculture,2017,138:92-104. [11] SHARIF M, KHAN M A, IQBAL Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection[J]. Computers and Electronics in Agriculture,2018,150:220-234. [12] LEI T,JIA X,ZHANG Y,et al. Superpixel-based fast fuzzy Cmeans clustering for color image segmentation[J]. IEEE Transactions on Fuzzy Systems,2019,27(9):1753-1766. [13] 毛罕平, 张艳诚, 胡波. 基于模糊C均值聚类的作物病害叶片图像分割方法研究[J]. 农业工程学报,2008,24(9):136-140. (MAO H P,ZHANG Y C,HU B. Segmentation of crop disease leaf images using fuzzy C-means clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(9):136-140.) [14] HOU X, ZHANG L. Saliency detection:a spectral residual approach[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2007:1-8. [15] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000,26(1):32-42.(ZHANG X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica,2000,26(1):32-42.) [16] 周志华. 机器学习[M]. 北京:清华大学出版社,2016:121-139. (ZHOU Z H. Machine Learning[M]. Beijing:Tsinghua University Press,2016:121-139.) [17] 范振军. 农作物病虫害图像检索方法研究与实现[D]. 绵阳:西南科技大学, 2018:9-11. (FAN Z J. Research and implementation of crop disease and pest image retrieval methods[D]. Mianyang:Southwest University of Science and Technology, 2018:9-11.) [18] LEI T,JIA X,ZHANG Y,et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering[J]. IEEE Transactions on Fuzzy Systems,2018,26(5):3027-3041. [19] ZHAO J,LIU J,FAN D,et al. EGNet:edge guidance network for salient object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway:IEEE,2019:8778-8787. |